Asian Red Head

Asian Red Head




🛑 ALL INFORMATION CLICK HERE 👈🏻👈🏻👈🏻

































Asian Red Head
From Wikipedia, the free encyclopedia


^ "Australian Faunal Directory: Scolopendra subspinipes mutilans " . Australian Department of the Environment and Heritage . Archived from the original on 13 September 2014 . Retrieved 10 June 2006 .

^ The PLOS ONE Staff (2015-09-22). "Correction: The Centipede Genus Scolopendra in Mainland Southeast Asia: Molecular Phylogenetics, Geometric Morphometrics and External Morphology as Tools for Species Delimitation" . PLOS ONE . 10 (9): e0139182. Bibcode : 2015PLoSO..1039182. . doi : 10.1371/journal.pone.0139182 . ISSN 1932-6203 . PMC 4579078 . PMID 26393360 .

^ Jump up to: a b Moon, Surk-Sik; Cho, Namsun; Shin, Jongheon; Seo, Youngwan; Lee, Chong Ock; Choi, Sang Un (1996-01-01). "Jineol, a Cytotoxic Alkaloid from the Centipede Scolopendra subspinipes". Journal of Natural Products . 59 (8): 777–779. doi : 10.1021/np960188t . ISSN 0163-3864 .

^ Ali, Salwa Mansur; Khan, Naveed Ahmed; Sagathevan, K.; Anwar, Ayaz; Siddiqui, Ruqaiyyah (2019-06-28). "Biologically active metabolite(s) from haemolymph of red-headed centipede Scolopendra subspinipes possess broad spectrum antibacterial activity" . AMB Express . 9 (1): 95. doi : 10.1186/s13568-019-0816-3 . ISSN 2191-0855 . PMC 6598926 . PMID 31254123 .

^ Johannsen, O. A.; Butt, Ferdinand Hinckley (1941). Embryology of insects and myriapods; the developmental history of insects, centipedes, and millepedes from egg desposition [!] to hatching, by Oskar A. Johannsen ... and Ferdinand H. Butt ... New York: McGraw-Hill Book Company, inc. doi : 10.5962/bhl.title.6583 .

^ "Review of the subspecies of Scolopendra subspinipes Leach, 1815 with the new description of the South Chinese member of the genus Scolopendra Linnaeus, 1758 named Scolopendra hainanum spec. nov.: (Myriapoda, Chilopoda, Scolopendridae)" . ResearchGate . Retrieved 2021-05-29 .

^ Jump up to: a b c d e "Chemical Punch Packed in Venoms Makes Centipedes Excellent Predators" . ResearchGate . May 1, 2012. Archived from the original on February 12, 2018 . Retrieved February 11, 2018 . Twenty-six neurotoxin-like peptides belonging to ten groups were identified from the centipede venoms, Scolopendra subspinipes mutilans L. Koch by peptidomics combined with transcriptome analysis, revealing the diversity of neurotoxins. These neurotoxins each contain two to four intramolecular disulfide bridges, and in most cases, the disulfide framework is different from that found in neurotoxins from the venoms of spiders, scorpions, marine cone snails, sea anemones, and snakes (5S animals).

^ Jump up to: a b c d Undheim, Eivind A.B.; King, Glenn F. (March 2011). "On the venom system of centipedes (Chilopoda), a neglected group of venomous animals" . Toxicon . 57 (4): 512–524. doi : 10.1016/j.toxicon.2011.01.004 . ISSN 0041-0101 . PMID 21255597 .

^ Yang, S.; Yang, F.; Wei, N.; Hong, J.; Li, B.; Luo, L.; Lai, R. (2015). "A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1" . Nature Communications . 6 (1): 8297. Bibcode : 2015NatCo...6.8297Y . doi : 10.1038/ncomms9297 . PMC 4589873 . PMID 26420335 .

^ Liangyu (January 26, 2018). "Chinese scientists find antidote to centipede venom" . Xinhua News Agency . Archived from the original on January 26, 2018 . Retrieved February 11, 2018 . Researchers at the Kunming Institute of Zoology found in experiments using mice and monkeys that retigabine can effectively treat symptoms of centipede venom such as heart failure, epilepsy, and respiratory depression.

^ He, Xuelai; Lee, Kwang Sik; Kim, Bo Yeon; Lee, Kyeong Yong; Ko, Hyeon Jin; Jia, Jingming; Yoon, Hyung Joo; Jin, Byung Rae (March 2019). "Centipede (Scolopendra subspinipes mutilans) venom toxin peptide exhibits cytotoxic and cell growth effects in a concentration-dependent manner" . Journal of Asia-Pacific Entomology . 22 (1): 19–24. doi : 10.1016/j.aspen.2018.11.018 . ISSN 1226-8615 . S2CID 92156185 .

^ Jump up to: a b Hakim, Md; Yang, Shilong; Lai, Ren (2015-11-17). "Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications" . Toxins . 7 (11): 4832–4851. doi : 10.3390/toxins7114832 . ISSN 2072-6651 . PMC 4663536 . PMID 26593947 .

^ Jump up to: a b c Dugon, Michel M. (2015), "Evolution, Morphology and Development of the Centipede Venom System" , Evolution of Venomous Animals and Their Toxins , Dordrecht: Springer Netherlands, pp. 1–15, doi : 10.1007/978-94-007-6727-0_1-1 , ISBN 978-94-007-6727-0 , retrieved 2021-05-15

^ Jump up to: a b Bonato, Lucio; Edgecombe, Gregory; Lewis, John; Minelli, Alessandro; Pereira, Luis; Shelley, Rowland; Zapparoli, Marzio (2010-11-18). "A common terminology for the external anatomy of centipedes (Chilopoda)" . ZooKeys (69): 17–51. doi : 10.3897/zookeys.69.737 . ISSN 1313-2970 . PMC 3088443 . PMID 21594038 .

^ Chu, YanYan; Qiu, PeiJu; Yu, RiLei (2020-04-05). "Centipede Venom Peptides Acting on Ion Channels" . Toxins . 12 (4): 230. doi : 10.3390/toxins12040230 . ISSN 2072-6651 . PMC 7232367 . PMID 32260499 .

^ Jump up to: a b Yang, Shilong; Liu, Zhonghua; Xiao, Yao; Li, Yuan; Rong, Mingqiang; Liang, Songping; Zhang, Zhiye; Yu, Haining; King, Glenn F.; Lai, Ren (September 2012). "Chemical Punch Packed in Venoms Makes Centipedes Excellent Predators" . Molecular & Cellular Proteomics . 11 (9): 640–650. doi : 10.1074/mcp.m112.018853 . ISSN 1535-9476 . PMC 3434766 . PMID 22595790 .

^ Blum, Murray Sheldon (1981). Chemical defenses of arthropods . New York: Academic Press. ISBN 978-0-323-14555-8 . OCLC 679411119 .

^ Voigtländer, Karin (2011-01-01), "15 Chilopoda – Ecology" , Treatise on Zoology - Anatomy, Taxonomy, Biology. The Myriapoda, Volume 1 , BRILL: 309–325, doi : 10.1163/9789004188266_016 , ISBN 978-90-04-18826-6 , retrieved 2021-05-15

^ Lewis, J. G. E. (1981-08-27). The Biology of Centipedes . Cambridge University Press. doi : 10.1017/cbo9780511565649 . ISBN 978-0-521-23413-9 .

^ Jump up to: a b c d e f g Dugon, Michel M.; Arthur, Wallace (June 2012). "Prey orientation and the role of venom availability in the predatory behaviour of the centipede Scolopendra subspinipes mutilans (Arthropoda: Chilopoda)" . Journal of Insect Physiology . 58 (6): 874–880. doi : 10.1016/j.jinsphys.2012.03.014 . ISSN 0022-1910 . PMID 22490529 .

^ Guizze, Samuel P.G.; Knysak, Irene; Barbaro, Katia C.; Karam-Gemael, Manoela; Chagas-Jr, Amazonas (2016). "Predatory behavior of three centipede species of the order Scolopendromorpha (Arthropoda: Myriapoda: Chilopoda)" . Zoologia (Curitiba) . 33 (6): e20160026. doi : 10.1590/s1984-4689zool-20160026 . ISSN 1984-4689 .

^ Shahriari, Neda; Sloan, Brett (2020), Trevino, Julian; Chen, Amy Y-Y (eds.), "Centipedes" , Dermatological Manual of Outdoor Hazards , Cham: Springer International Publishing, pp. 201–207, doi : 10.1007/978-3-030-37782-3_13 , ISBN 978-3-030-37781-6 , S2CID 242017998 , retrieved 2021-05-15

^ Stankiewicz, Maria; Hamon, Alain; Benkhalifa, Rym; Kadziela, Wojciech; Hue, Bernard; Lucas, Sylvia; Mebs, Dietrich; Pelhate, Marcel (October 1999). "Effects of a centipede venom fraction on insect nervous system, a native Xenopus oocyte receptor and on an expressed Drosophila muscarinic receptor" . Toxicon . 37 (10): 1431–1445. doi : 10.1016/s0041-0101(99)00089-6 . ISSN 0041-0101 . PMID 10414867 .

^ Jump up to: a b Kronmüller, Christian; Lewis, John G.J. (2015-06-30). "On the function of the ultimate legs of some Scolopendridae (Chilopoda, Scolopendromorpha)" . ZooKeys (510): 269–278. doi : 10.3897/zookeys.510.8674 . ISSN 1313-2970 . PMC 4523778 . PMID 26257548 .

^ Kenning, Matthes; Müller, Carsten H.G.; Sombke, Andy (2017-11-14). "The ultimate legs of Chilopoda (Myriapoda): a review on their morphological disparity and functional variability" . PeerJ . 5 : e4023. doi : 10.7717/peerj.4023 . ISSN 2167-8359 . PMC 5691793 . PMID 29158971 .

^ Remington, Charles L. (1950-05-01). "The Bite and Habits of a Giant Centipede (Scolopendra Subspinipes) in the Philippine Islands" . The American Journal of Tropical Medicine and Hygiene . s1-30 (3): 453–455. doi : 10.4269/ajtmh.1950.s1-30.453 . ISSN 0002-9637 . PMID 15425735 .

^ Jump up to: a b Pemberton, Robert W. (June 1999). "Insects and other arthropods used as drugs in Korean traditional medicine" . Journal of Ethnopharmacology . 65 (3): 207–216. doi : 10.1016/S0378-8741(98)00209-8 . PMID 10404418 .

^ Meyer-Rochow, V. Benno (2017-02-07). "Therapeutic arthropods and other, largely terrestrial, folk-medicinally important invertebrates: a comparative survey and review" . Journal of Ethnobiology and Ethnomedicine . 13 (1): 9. doi : 10.1186/s13002-017-0136-0 . ISSN 1746-4269 . PMC 5296966 . PMID 28173820 .

^ Jump up to: a b Zhang, Huijie; Lan, Xinqiang; Zhang, Yun; Sun, Tongyi; Lee, Wen-Hui (February 2019). "Venom differences between the centipedes Scolopendra mojiangica and Scolopendra subspinipes mutilans revealed by peptidomics/proteomics analysis" . Toxicon . 158 : S88. doi : 10.1016/j.toxicon.2018.10.302 . S2CID 92494691 .

^ Yong-lu, R. a. N.; Gan, W. U.; Jin-huan, Wang; Wen-juan, Y. E.; Chen, C. H. I.; Tian-gao, L. U. O. (1996-02-22). "Comparison of Scolopendra mojiangica Zhang et Chi and S.subspinipes mutilans L.Koch II Pharmacodynamics and Toxicology" . Zoological Research . 17 (1): 79–83. ISSN 2095-8137 .

^ Jump up to: a b c Hou, Huanhuan; Yan, Weili; Du, Kexing; Ye, Yangjing; Cao, Qianqian; Ren, Wenhua (December 2013). "Construction and expression of an antimicrobial peptide scolopin 1 from the centipede venoms of Scolopendra subspinipes mutilans in Escherichia coli using SUMO fusion partner" . Protein Expression and Purification . 92 (2): 230–234. doi : 10.1016/j.pep.2013.10.004 . PMID 24145284 .

^ Yong-Jiea, Teng; Zhuob, Liu; Liuc, Liao; Yuanc, Chen; Xiao-Did, Huang; Xue-Feic, Tian (June 2020). "STAT3 Inhibition by Centipede Scolopendra Extract in Liver Cancer HepG2 Cells and Orthotopic Mouse Models of Hepatocellular Carcinoma" . Digital Chinese Medicine . 3 (2): 67–79. doi : 10.1016/j.dcmed.2020.06.002 .

^ Jump up to: a b Zhao, Haixia; Li, Ying; Wang, Yuzhong; Zhang, Jing; Ouyang, Xiaoming; Peng, Renxiu; Yang, Jing (August 2012). "Antitumor and immunostimulatory activity of a polysaccharide–protein complex from Scolopendra subspinipes mutilans L. Koch in tumor-bearing mice" . Food and Chemical Toxicology . 50 (8): 2648–2655. doi : 10.1016/j.fct.2012.05.018 . PMID 22613217 .

^ Rinkevich, B.; Müller, W. E. G., eds. (1996). Invertebrate Immunology . Progress in Molecular and Subcellular Biology. Vol. 15. Berlin, Heidelberg: Springer Berlin Heidelberg. doi : 10.1007/978-3-642-79735-4 . ISBN 978-3-642-79737-8 . S2CID 31386687 .

^ Park, Yoo Jung; Lee, Ha Young; Jung, Young Su; Park, Joon Seong; Hwang, Jae Sam; Bae, Yoe-Sik (2015-08-31). "Antimicrobial peptide scolopendrasin VII, derived from the centipede Scolopendra subspinipes mutilans, stimulates macrophage chemotaxis via formyl peptide receptor 1" . BMB Reports . 48 (8): 479–484. doi : 10.5483/BMBRep.2015.48.8.115 . ISSN 1976-6696 . PMC 4576957 . PMID 26129676 .

^ Jump up to: a b Peng, Kanfu; Kong, Yi; Zhai, Lei; Wu, Xiongfei; Jia, Peng; Liu, Jingze; Yu, Haining (February 2010). "Two novel antimicrobial peptides from centipede venoms" . Toxicon . 55 (2–3): 274–279. doi : 10.1016/j.toxicon.2009.07.040 . PMID 19716842 .

^ Yan, Weili; Lu, Jia; Li, Guiting; Wei, Huiyuan; Ren, Wen-Hua (September 2018). "Amidated Scolopin-2 inhibits proliferation and induces apoptosis of Hela cells in vitro and in vivo: Amidated Scolopin-2 induces Hela cell apoptosis" . Biotechnology and Applied Biochemistry . 65 (5): 672–679. doi : 10.1002/bab.1661 . PMID 29644748 . S2CID 4811845 .

^ Zhang, Huijie; Lan, Xinqiang; Zhang, Yun; Sun, Tongyi; Lee, Wen-Hui (February 2019). "Venom differences between the centipedes Scolopendra mojiangica and Scolopendra subspinipes mutilans revealed by peptidomics/proteomics analysis" . Toxicon . 158 : S88. doi : 10.1016/j.toxicon.2018.10.302 . ISSN 0041-0101 . S2CID 92494691 .

^ Washio, Ken; Masaki, Taro; Fujii, Shotaro; Hatakeyama, Mayumi; Oda, Yoshiko; Fukunaga, Atsushi; Natsuaki, Masaru (July 2018). "Anaphylaxis caused by a centipede bite: A "true" type-I allergic reaction" . Allergology International . 67 (3): 419–420. doi : 10.1016/j.alit.2018.01.005 . ISSN 1323-8930 . PMID 29519763 . S2CID 3822642 .

^ "Recent Findings from Kunming Institute of Zoology Has Provided New Data on Allergies (Isolation and characterization of the major centipede allergen Sco m 5 from Scolopendra subspinipes mutilans)". Health & Medicine Week . NewsRX LLC. July 31, 2020. p. 390.

^ Jump up to: a b Lan, Xin-Qiang; Zhao, Feng; Wang, Qi-Quan; Li, Jiang-Hua; Zeng, Lin; Zhang, Yun; Lee, Wen-Hui (January 2021). "Isolation and characterization of the major centipede allergen Sco m 5 from Scolopendra subspinipes mutilans" . Allergology International . 70 (1): 121–128. doi : 10.1016/j.alit.2020.06.003 . ISSN 1323-8930 . PMID 32680616 .

^ Lan, Xinqiang; Zhao, Feng; Zhang, Yun; Lee, Wen-Hui (February 2019). "Venom and torso toxin profiles of the centipede Scolopendra subspinipes mutilans reveal material base in clinical practice" . Toxicon . 158 : S88. doi : 10.1016/j.toxicon.2018.10.300 . ISSN 0041-0101 . S2CID 91467798 .


Join the 2022 Science Photo Contest. Visualize Science for Wikipedia!
The Chinese red-headed centipede , also known as the Chinese red head , ( Scolopendra subspinipes mutilans ) is a centipede from East Asia and Australasia . [1] It averages 20 cm (8 in) in length and lives in damp environments. [2]

In ancient Chinese traditions, this centipede is used for its healing properties. Putting a Chinese red head on a rash or other skin-disease is said to speed up the healing process. The roasted dry centipede is pulverized and used in Korea for the treatment of back pain, furuncles , and sores. [3]

S. s. mutilans is known for harbouring little aggression to other centipedes, a trait very rare amongst giant centipedes, and allows it to be kept communally. Antimicrobial activities of the identified compounds were reported against Gram-positive and Gram-negative bacteria, fungi, viruses, and parasites, that possibly explain centipede's survival in harsh and polluted environments. [4]

Females are incubatoral mothers, guarding the eggs by wrapping their bodies around their clutches until the eggs hatch. [5]

This subspecies differs from other S. subspinipes subspecies in spination of the prefemur of the ventral legs, ventrally, dorsally, and medially. [6]

Venoms of centipedes remained largely unstudied, and the components remain largely unknown. [7] [8] The venom of the Chinese red-headed centipede contains a small peptide toxin called RhTx , which increases activation of the TRPV1 ion channel, causing a localized burning pain. [9] The crude venom is said to be toxic in mice and to induce platelet aggregation. [3] In addition, another 26 neurotoxins belonging to 10 different groups of peptides have been identified. [7] In January 2018, Chinese scientists found an antidote to the painful venom of centipede in the drug retigabine , used to treat epilepsy . [10]

The biological actions of the toxins in centipede venom are mostly unknown. A peptide named S. s. mutilans venom toxin peptide (SsmTP) and S. s. mutilans 6 were identified in S. s. mutilans' s venom. SsmTP consists of 66 amino acids, and its composition highly resembles those of neurotoxins. The peptide is found within the venom duct. SsmTP was found to be toxic to cells depending on the concentration administered. It promotes cell growth in low concentrations in vitro (i.e. outside a living organism), but is cytotoxic in high concentrations. A low concentration of SsmTP also protects cells from oxidative damage by inhibiting programmed cell death ( apoptosis ) and the inflammatory response initiator caspase-1 . [11]

Little is known about the venom and the venom apparatus of centipedes. [7] [8] [12] Studies on venom gland described it as the cuticle and epidermis being turned inside out. The venom gland consists of many epithelial secretory units, each with its own excretory system that is shaped like valves. Centipedes of the order Scolopendromorpha have interspersed radial striated muscles between the secretory units, where one end connects to the lumen of the venom gland and the other end connects to peripheral muscles. These muscles may be used for the contraction and constriction of anthe gland during venom ejection. [13] The venom glands of Scolopendridae species are elongated cylindrical shape, with the lumen spanning almost the entire length of the gland. The long span of the lumen likely allows greater control over the secretion of different venom components. The venom glands span along the outer curvature of trochanteroprefemur of each forcipule. [8] [13] [14]

Centipede venom generally contains a few different enzymes that are very different from other arthropods, where metalloprotease , an enzyme that breaks down protein plays an important role. Centipede venom has effects on skeletal muscles, heart muscles, and neurons, and the effects are attributed to the larger protein molecules in the venom. [8]

Venoms of S. s. mutilans contain a diverse range of neurotoxins, including 26 neurotoxin-like peptides that belong to 10 different groups. Most of the 26 identified neurotoxin-like peptides have a different molecular structure compared to the neurotoxins found in spiders, snakes, scorpions, marine cone snails, and sea anemones. [7] The functional mechanism of these peptides are similar to the neurotoxins of the mention venomous animals, yet their primary structures remain unique. [7] A few were found to contain insecticidal properties and act on voltage-gated sodium, potassium, and calcium channels. [15] It was found that both purified neurotoxins and unprocessed centipede venom are highly insecticidal, with the unprocessed venom being significantly stronger than all purified neurotoxins in insecticidal effects. [12] [16] Centipede venoms might have the potential to provide peptide candidates with potential pharmaceutical or agrochemical uses due to their high level of biochemical diversity. [16]

S. s. mutilans , like other centipedes, is a predator that kills by injecting venom into its prey. Venom is injected to immobilize and break down internal tissues. [17] Venoms of Scolopendridae , including Scolopendra subspinipes mutilans , contain neurotoxins, which are suspected to be a significant fast-acting component in venoms of many centipedes. [18] This species mainly feeds on live animals; plant materials are occasionally consumed but its consumption is considered negligible. [19] To get hold of the prey, this centipede grabs prey with its anterior legs, and typically envenomates prey by stabbing it using its forcipules. [20] [13] Little quantitative ecological and behavioural work was done for centipedes. [20] [21] Some studies, however, have found that centipedes are highly selective and tend to strike at the head or thorax instead of the abdomen. [20] If the bite was made on the abdomen, the centipede would usually reposition the prey and strike
Asian Blow Job Videos
Asian Teen Voyeur
Asian Celebrity Porn

Report Page