Асфальто-смолисто-парафиновые отложения на Зай-Каратайской площади. Дипломная (ВКР). Геология.

Асфальто-смолисто-парафиновые отложения на Зай-Каратайской площади. Дипломная (ВКР). Геология.




👉🏻👉🏻👉🏻 ВСЯ ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻



























































Вы можете узнать стоимость помощи в написании студенческой работы.


Помощь в написании работы, которую точно примут!

Похожие работы на - Асфальто-смолисто-парафиновые отложения на Зай-Каратайской площади
Нужна качественная работа без плагиата?

Не нашел материал для своей работы?


Поможем написать качественную работу Без плагиата!

Тема:
«Асфальто-смолисто-парафиновые отложения на Зай-Каратайской площади»


2.4
Коллекторские свойства продуктивных горизонтов


2.5
Физико-химические свойства нефти, газа и пластовой воды


3.1
Характеристика эксплуатационного фонда скважин


3.2 Анализ
причин ремонтов скважин оборудованных УШСН


3.3 Механизм
и условия формирования АСПО в скважине


3.5 Методы
используемые по предотвращению отложений АСПО


3.5.1
Механические методы борьбы с АСПО и технология работ при их применении


3.5.2
Физические методы борьбы с АСПО


3.53
Химические методы борьбы с АСПО


3.6 Анализ
методов борьбы с АСПО и определение оценки НГДУ «ЛН» эффективности применяемых
методов


3.7 Контроль
за работой скважин, на которых применяются методы борьбы с АСПО


3.8 Расчет
подбора глубинно-насосного оборудования скважины при внедрении скребков


4. Охрана
труда и противопожарная защита


4.1 Охрана
труда и техника безопасности


5.1
Мероприятия по охране недр и окружающей среды


Эксплуатация нефтедобывающих скважин на месторождениях
Татарстана осложнена многими факторами. Большие потери на промыслах происходят
от осаждения в парах нефтенасосных парод, в колоннах скважин и в подъемных трубахмазеобразной
или твердой массы темного цвета, известной под названием парафин – АСПО
(асфальтно-смоло-парафинные отложения). Понятие процесса образования и технологии
борьбы с АСПО при добыче нефти, по сей день является актуальной
научно-технической и практической задачей, поскольку этот фактор напрямую влияет
на работоспособность и конечную продуктивность скважин.


Формирование парафиноотложений снижает добычу нефти и
газа, сокращает межремонтный период скважин, увеличивает трудовые и
материальные затраты и повышает себестоимость добываемой продукции.


В настоящее время известно около двадцати различных
способов борьбы с отложениями парафина. Каждый из методов борьбы с отложениями
парафина требует применения на скважине более или менее сложного оборудования и
всевозможных устройств, нуждающихся в повседневном контроле за их работой.
Подбор эффективных методов предупреждения и удаления парафиновых отложений
обеспечивает продолжительный межремонтный период работы скважин, повышает
нефтегазоотдачу и сокращает материальные затраты.





В географическом отношении Зай-Каратайская площадь расположена на
пересеченной оврагами и балками местности. Климат резко континентальный –
суровая холодная зима с сильными ветрами и буранами, жаркое лето. Средняя
январская температура колеблется от –13 до –14 градусов. Средняя температура
июля +19 градусов.


Наибольшее
количество осадков выпадает в июле – до 44мм, минимальное в феврале – до 12мм.


По растительному покрову данная температура относится к лесостепи.




Зай-Каратайская площадь представляет
собой широкий, почти выположенный юго-западный склон Южного купола Татарского
свода, постепенно погружающийся в юго-западном направлении.


На фоне полого склона выделяются сравнительно крупные по размерам
поднятия, оконтуренные изогипсами с абсолютными отметками –1460м и 1465м.


Кроме того, склон осложнён многочисленными мелкими локальными поднятиями
разной формы и ориентации, разделенными локальными прогибами. Наиболее резко
выражены локальные поднятия с амплитудой 30-40мм, размещаются в основном в
западной части, из них территории в субмеридиональном направлении.





Аллювиальные и глинисто-песчаные породы мощностью 10м.


Казанский ярус 10-130м. Песчаники и глины с переслоями плотных
известняков. Мощность 120м.


Уфимский ярус 130-250м.Песчаники, глины, аргиллиты. Мощность120м.


Артинский ярус 250-370м. Кавернозные известняки с включением гипса,
мергеля и глины. Мощность 120м.


Верхний карбон 370-490м. Физулиновые известняки, доломиты участками
окремнелые, с линзами гипса. Мощность 120м.


 Средний карбон 490-610м. Доломиты, известняки с включением гипса,
ангидриты, глины.


Подольский горизонт 610-695м.
Доломиты, известняки с прослоями глинисто-алевролитового материала. Мощность
85м.


Каширский горизонт 695-765м. Органогенно-обломочные известняки и доломиты
с прослоями аргиллитов. Мощность 70м.


Верейский горизонт 765-805м. Органогенно-обломочные известняки, доломиты
с прослоями аргиллитов. Мощность 40м.


Башкирский ярус 805-855м. Известняки с примазками глин. Мощность 50м.


Нижний карбон. Каюрский ярус 855-905м. Органогенные известняки с хорошо
развитыми силогмитовыми швами и доломиты. Мощность 50м.


Серпуховско-Окский надгоризонт 905-1125м. Известняки, доломиты с
включениями гипса, ангидрита и переслоями известняков. Мощность 210м.


Яснополянский надгоризонт 1125-1165м. Песчаники, известняки, аргилиты с
прослоями углистых сланцев. Отмечены нефтепроявления. Мощность 40м.


Турнейский ярус 1165-1200м. Органогенно-обломочные известняки с
включением углисто-глинистого материала. Пористые разновидности известняков
насыщенных нефтью. Мощность 35м.


Заводжзкий слой 1200-1260м. Органогенно-обломочные известняки прослоями
окремнелые. Отмечены нефтепроявления. Мощность 60м.


Фаменский ярус 1260-1490м. Глинистые известняки, прослоями доломитизированные.
В доломитах отмечаются пятна битума. Мощность 230м.


Евлено-Ливенский Воронежский 1490-1610м. Переслаивание


Битуминозно -глинистых известняков в различной степени доломити
зированных, доломитов, мергелей. Мощность 120м.


Бурагский горизонт 1610-1655м. Тонкозернистые известняки, глинисто-битуминозные,
доломитизированные. Мощность 45м.


Доманиковый горизонт 1655-1700м. Известняки перекриста-лизованные, иногда
битуминозные. Мощность 45м.


Фаргаевский горизонт 1700-1725м.
Известняки глинисто - битуминозные с прослоями мергелей и горючими сланцами.
Мощность 25м. Шиловский горизонт 1725-1750м. Аргиллиты, листоватоклеистые с
прослоями сильно глинистых алевролитов и карбонатных пород. Мощность 25м.


Пашийский горизонт 1750-1785м.
Переслаивание песчаников и алевролитов в различной степени. Мощность 35м.




2.4 Коллекторские свойства
продуктивных горизонтов




Основным эксплуатационным объектом
являются отложения пошийского горизонта франкского яруса верхнего девона,
представленного переслоением песчаных, песчано-алевролитовых и аргиллитовых
пород, коллекторами в которых являются хорошо отсортированные мелкозернистые
песчаники и крупнозернистые алевролиты.


В разрезе горизонта Д1 выделяются
(сверху, вниз) пласты: а, б 1 , б 2 , б 3 , в, г 1 ,
г 2 , д.


Вследствие замещения проницаемых пород непроницаемыми, пласты не всегда
представлены коллекторами. Поэтому только в отдельных скважинах выделяются все
непроницаемые пласты. В большинстве же скважин происходит их замещение в
различных комбинациях.


Пласт “a”занимает 34,8% площади, из них на 60,0% он представлен
алевролитами, которые в виде различных по размеру линз равномерно располагаются
по площади. В целом пласты маломощны от 1,2 до 4,0м. Средняя пористость по
песчаникам составляет 20,1%, по алевролитам 14,6%, средняя проницаемость по
песчаникам равна 0,449мкм 2 , по алевролитам 0,135мкм 2 .


Пласт “a” содержит 7,5% извлекаемых запасов горизонта Д1.


Пласты б 1 и б 2 также развиты в виде отдельных линз,
сложенных песчаниками и алевролитами. Общая площадь распространения коллекторов
составляет 40,7%. От общей нефтеносной площади пласта на долю песчаников
приходится 33,0%. Средняя мощность пласта б 1 2,0м. Средняя
пористость по песчаникам 19,8%, по алевролитам 15,5%, проницаемость по песчаникам
0,374мкм 2 , по алевролитам 0,173мкм 2 . Пласт б 1
содержит 5,4% извлекаемых запасов горизонта Д1. Средняя мощность пласта б 2 -2,4м,
средняя пористость по песчаникам 20,1%, по алевролитам 15,7%, средняя
проницаемость по песчаникам 0,428мкм 2 , по алевролитам 0,250мкм 2 .


Пласт б 2 содержит 9,9%
извлекаемых запасов горизонта Д1.


Пласты б 1 и б 2
также развиты в виде отдельных линз, сложенных песчаниками и алевролитами.
Общая площадь распространения коллекторов составляет 40,7%. От общей
нефтеносной площади пласта на долю песчаников приходится 33,0%. Средняя
мощность пласта б 1 2,0м. Средняя пористость по песчаникам 19,8%, по
алевролитам 15,5%, проницаемость по песчаникам 0,374мкм 2 , по
алевролитам 0,173мкм 2 . Пласт б 1 содержит 5,4% извлекаемых
запасов горизонта Д1. Средняя мощность пласта б 2 -2,4м, средняя
пористость по песчаникам 20,1%, по алевролитам 15,7%, средняя проницаемость по
песчаникам 0,428мкм 2 , по алевролитам 0,250мкм 2 .


Пласт б 2 содержит 9,9%
извлекаемых запасов горизонта Д1.


Пласт б 3 : общая площадь
занятая коллекторами составляет


49,6%. От всей нефтеносной площади
пласта на долю песчаников приходится 33,4%. Средняя мощность пласта 3,3м,
средняя пористость по песчаникам составляет 20,1%, по алевролитам 14,7%,
средняя проницаемость по песчаникам 0,467мкм 2 , по алевролитам
0,131мкм 2 .


Пласт “в” содержит 23,5% извлекаемых
запасов горизонта Д1.


Пласт “г” имеет площадное
распространение.


Пласты коллекторы занимают 98,8%
площади, из них песчаники 80,4%. По своим коллекторским свойствам пласт “г”
является лучшим в разрезе горизонта Д1. Средняя мощность пласта 3,7м, средняя
пористость для песчаникам 20,4%, для алевролитов 15,5%, средняя проницаемость
для песчаников 0,362мкм 2 , для алевролитов 0,145мкм 2 .


В целом нефтенасыщенные пласты занимают около 40% площади, которая в свою
очередь, почти поровну распределяется между нефтяной и водонефтяной зонами.


Пласт “г” содержит 31,7% извлекаемых
запасов горизонта Д1.


Пласт “д “ также имеет площадное
распространение. Пласты коллекторы занимают 80,6% площади, из них песчаники
80,4%.


Нефтенасыщенный и нефтеводонасыщенный
коллектор вскрыт в скважинах, составляющих 10%, в остальных водонасыщенные
коллекторы. Средняя мощность пласта 4,7м, средняя пористость песчаников 20,1%,
алевролитов 15,0%, средняя проницаемость песчаников составляет 0,436мкм 2 .


Пласт “д” содержит 28% извлекаемых
запасов горизонта Д1.





2.5 Физико-химические свойства нефти,
газа и пластовой воды




Состав газа выделенного из нефти при однократном разгазировании
определяется на хроматографах типа ЛХМ-8мд, ХРОМ-5,ХРОМ-4 и вирохром.




Таблица 1. Физико-химические свойства
воды.




Попутный газ богат этаном и пропаном,
он содержит: СН-30-40%; СН-20-30%; СН-5-20%; СН-3-5%; высших-0,5-2%; азота и
редких-14,2%.


Пластовый газовый фактор в среднем на
площади для Девонских отложений составляет 63,94м 3 /т.


В газовом составе преобладает азот
(до 75% по объёму), метана 8,7%, углекислого газа 2,6%.





При водонапорном режиме нефть из пласта
к забоям скважин движется под действием напора краевой воды.


Данный режим проявляется если продуктивный пласт гидродинамически связан
с поверхностью земли или же с трещинами в её поверхностном слое, по которым
может поступать в пласт вода, при однородном строении пластов и мощных
коллекторах. При этом контур питания часто находится сравнительно недалеко от залежи,
что обеспечивает пополнение жидкости в пласте с отбором из него нефти.


В залежах с водонапорным режимом темп
отбора нефти является основным показателем определяющим изменение пластового
давления.


В период работы залежи на
водонапорном режиме отборы нефти могут удерживаться на одном уровне. Пластовое
давление постоянно, либо медленно снижается, однако в течении всего периода
разработки залежи оно выше давления насыщения. Поэтому газовые факторы низки и
не изменяются во времени.


Под действием напора краевых и
подошвенных вод происходит постепенное перемещение контура нефтеносности и
обводнение эксплуатационных скважин ведущие к падению добычи нефти.


Водонапорный режим является самым
эффективным из всех остальных. Для него характерен очень высокий коэффициент
нефтеотдачи, иногда до 0,9. Такая нефтеотдача достигается при оптимальных
темпах отбора.




На залежи применяется следующая схема
бурения:


1.
Под направление
скважина бурится на воде.


2.
Под кондуктор
бурится турбобуром на воде.


3.
Под НКТ из-под
кондуктора до глубины 900-1000м и бурится на воде.


4.
С глубины
900-1000м до перехода на глинистый раствор бурится винтовым забойным двигателем
на воде.


5.
Дальнейшее
бурение (90-100м) до проектной глубины ведется ротором на глинистом растворе.


Все скважины имеют одноколонную конструкцию. Направление диаметром 324мм
с толщиной стенки 9-10мм спускается на глубину от 30 до 41м. Кондуктор 245мм с
толщиной стенки 8-10мм, спускается на глубину от 165 до 32 м. НКТ диаметром 146 и 168мм спускается на глубину от 1669 до 1838м. толщина стенки
эксплуатационной колонны в нагнетательных скважинах – 8мм, в добывающих – 7мм;
7 и 8мм, 8 и 9мм, в зависимости от результатов расчета по данным конкретных
условий эксплуатации скважин. Для обеспечения нормальных условий бурения,
закачивания и эксплуатации скважин, а также защиты обсадных колонн от наружной
коррозии, выполнения требований охраны недр. Тампонажный раствор за направлением
и кондуктором поднимается до устья, а за эксплуатационной колонной – как
минимум с перекрытием башмака кондуктора. Осложнения в бурении, заключающиеся в
осыпании пород происходит как правило в интервале кыновских глин и приводит к
прихвату инструмента. Кроме того, имеют место участки с высоким пластовым
давлением выше и нижележащих пластов, что может привести к проявлению, выбросу
или открытому фонтану.





3. ТЕХНИКО – ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ




3.1 Характеристика эксплутационного фонда
скважин




Рис.1.
Динамика фонда нефтяных скважин.




Проведенный
анализ динамики фонда скважин за последние 4 года показывает (см. гистограмму),
что эксплуатационный фонд скважин по НГДУ «ЛН»с 2001 года по 2004 год вырос с
2387 скважин до 2530. При этом происходит уменьшение ввода скважин,
оборудованных УЭЦН. Это связано с тем, что по НГДУ ежегодно проводятся геолого-технические
мероприятия, направленные на снижение обводненности добываемой продукции. К эти
методам относятся закачка в пласты различных изоляционных материалов, таких как
НБП, СНПХ9633 и др.


Наряду
с снижением обводненности скважин после закачки вышеуказанных реагентов,
происходит уменьшение пропускной способности пород. По этой причине
производился перевод скважин с ЭЦН на добычу штанговыми насосами. Это и
является причиной увеличения фонда скважин, оборудованных УШСН.


Рост
бездействующего фонда связано с тем, что до проведения различных мероприятий,
не рентабельный фонд скважин останавливается, добыча нефти по этим скважинам
временно прекращена.




Таблица 2 Динамика парафинящегося фонда




Парафинистый
фонд скважин, в том числе ШГН, ЭЦН

Кол-во ремонтов
по причине АСПО, в т.ч. ШГН ЭЦН

По ЦДНиГ-1 часторемонтируемый фонд скважин в 2004г.
составил 7 скв., а в 2003г. их было 19 скв., т.е. количество скважин часторемонтируемого
фонда уменьшилось в 2,7 раза, что связано с 96% охватом осложненного фонда
средствами борьбы с АСПО.




3.2 Анализ причин ремонтов скважин оборудованных
УСШН




Многообразие условий эксплуатации обуславливает
различные причины отказов оборудования. Большинство отказов связано с действием
эксплуатационных факторов. Их можно разделить на три основные группы:
Коррозионное и коррозионно-усталостное разрушение; износ; образование на
поверхности оборудования значительных отложений парафинов и солей.


Коррозионное разрушение - одна из распространенных
причин отказов оборудования скважин. Они представляют собой самопроизвольный
процесс разрушения металла при контакте с пластовой водой. Наиболее
интенсивному разрушению подвержены колонны НКТ.


98 % всех обрывов насосных штанг и НКТ происходит в
результате коррозионно-усталостного разрушения. Значительному износу подвержены
уплотнительные поверхности задвижек, используемые в обвязке устья скважин.


Одна из распространенных причин отказов оборудования
скважин эксплуатируемых насосным способом — значительные отложения парафина и
солей. Причины подземных ремонтов скважин оборудованных ШСН представлены в
таблице 3.


При добыче парафинистой нефти происходит отложение парафина
в НКТ. В результате этого сужается поперечное сечение труб, возрастает
сопротивление движению жидкости и перемещению колонны штанг, что приводит к
обрыву штанг или их заклиниванию. Увеличивается также и нагрузка на головку
балансира, нарушается его уравновешенность. В связи с уменьшением проходного
сечения уменьшается коэффициент подачи, вплоть до полного прекращения подачи вследствие
образования пробок.




Таблица 3. Причины подземных ремонтов скважин оборудованных
ШСН по НГДУ "ЛН"




Отдельные комки АСПО, попадая под клапаны насоса,
могут нарушить их герметичность, что также является одной из причин подземного
ремонта.


При подъеме штанг во время ремонта, плунжер или
вставной насос срезает парафин со стенок НКТ и образует над собой сплошную
парафиновую пробку, которая выталкивает нефть из труб, тем самым загрязняет
территорию возле скважины.





Таблица 4. Подземный ремонт, связанный с отложением
парафина на ШГН




Количество
подземных ремонтов по причине отложения парафина в НКТ

Количество
подземных ремонтов по причине отложения парафина в насосе

Из таблицы 4 видно, что количество подземных ремонтов по
причине отложения парафина сократилось незначительно и составило 137 ремонтов.


С целью увеличения МРП - межремонтного периода на
промысле проводятся следующие мероприятия.


1.Необходимо проводить анализ часто ремонтируемого
фонда скважин и составлять мероприятия с целью его уменьшения.


2.Проводить анализ использования различных методов
борьбы с АСПО, для определения наиболее эффективного и экономически выгодного метода.


3.Внедрять скребки, трубы Бугульминского механического
завода (БМЗ), штанги с покрытием и т.д., в зависимости от их эффективности.


4.Согласно графика, проводить пропарку устьевой
арматуры скважин.


5.В скважинах, с низким Рпл., освоение производит с
использованием шкивов.


6.Постоянно производить выводы, после ПРС, о его
причине.




3.3 Механизм и условия формирования АСПО
в скважине




Современные представления о механизме образования парафиновых
отложений на скважинном оборудовании можно условно подразделить на
осадочно-объемную теорию и кристаллизационно-поверхностную.


Первая предполагает, что кристаллы парафина образуются
в объеме движущейся нефти и постепенно оседают на поверхности металла и
закрепляются на ней, образуя постепенно осадочный слой органических отложений.


По второму механизму - парафиновые кристаллы
образуются непосредственно на металлической поверхности и постепенно кристаллизуются
в комплексы. Процесс кристаллизации парафина на поверхности идет за счет
подпитки из нефтяного раствора.


Существует еще и третий механизм - это смешанным
путем, имеющим все особенности первых двух. При этом состояние поверхности и ее
природы существенным образом влияют на течение процесса образования парафиновых
отложений.


Таким образом, принимая тот или иной механизм
образования АСПО за базу, подходы в борьбе с предупреждением, органических
отложений будут разные.


Необходимыми
условиями формирования парафиновых отложений являются :


-
наличие в нефти
высокомолекулярных соединений углеводородов и в первую очередь метанового ряда
(парафинов);


-
снижение пластового
давления до давления насыщения;


-
снижение
температуры потока до значений, при которых происходит выделение твердой фазы
из нефти;


-
наличие подложки с
пониженной температурой, на которой кристаллизуются высокомолекулярные
углеводороды с достаточно прочным сцеплением их с поверхностью, исключающим
возможность срыва отложений потоком газожидкостной смеси или нефти при заданном
технологическом режиме.


Существует множество и других факторов способствующих
или препятствующих интенсивному формированию парафиновых отложений.


К наиболее существенным из них могут быть отнесены:


1.
Скорость потока.
Как показали исследования, в начале интенсивность отложений растет с
увеличением скорости за счет увеличения массового переноса, а затем снижается, поскольку
возрастают касательные напряжения, повышающие прочность сцепления парафина с
поверхностью оборудования.


2.
Газовый фактор и
сам процесс выделения газа при снижении давления. С выделением и расширением газа
понижается температура, а присутствие газа в потоке усиливает массообмен, в
результате доля парафиновых углеводородов, кристаллизирующихся на поверхности
оборудования, существенно возрастает.


3.
Наличие механических
примесей, являющихся активными центрами


4.
Кристаллизации,
может привести к уменьшению интенсивности отложения парафина за счет снижения состояния
перенасыщения нефти последним и увеличение его доли кристаллизации в объеме.


5.
Состояние
поверхности оборудования (подложки) оказывает существенное влияние на прочность
отложений, в частности, полярность материала подложки и качество поверхности (гладкость).
Чем выше значение полярности материала и ее гладкость, глянцевитость (чистота
обработки), тем меньше адгезия, а следовательно, при меньших скоростях потока
будут срываться парафиновые образования с таких поверхностей.


6.
Обводненность
продукции скважины. Она оказывает двоякое действие. Вначале при малом
содержании воды в нефти и прочих равных условиях наблюдается некоторое
повышение интенсивности отложений парафина, а затем с увеличением доли воды в
потоке интенсивность снижается как за счет повышения температуры потока
(теплоемкость воды в 1,6... 1,8 раза больше нефти), так и за счет обращения
фаз, при котором ухудшается контакт нефти с поверхностью оборудования.


Схема движения нефти в полости НКТ, при высокой
обводненности продукции, для гидрофильной и гидрофобной поверхностей представлена
на (рис2).


7.На Ромашкинском месторождении наиболее интенсивная
парафинизация скважин происходит при дебите 40т/сут. При дальнейшем увеличении дебита,
наблюдается срыв отложений с поверхности подземного оборудования скважин
потоками газожидкостной смеси.




Рис. 2 Схема движения нефти в полости НКТ при высокой
обводненности продукции


а) поверхность металла гидрофобная; б) поверхность
гидрофильная;


1 — штанга, 2-НКТ, 3 – нефть, 4-АСПО, 5 – вода.




Без знаний о составе и основных свойствах АСПО,
основного объекта исследований, не может вестись работа по предотвращению
отложений на нефтепромысловом оборудовании.


АСПО — природный композитный материал, состоящий из
10-15 органо-минеральных веществ и соединений. Отложения представляют собой,
как правило, мазеподобную суспензию или эмульсию с высокой адгезией к различным
поверхностям.


Отложения на поверхности нефтепромыслового оборудования
в основном формируются органическими и неорганическими веществами.


Из органических веществ в составе отложений АСПО
имеются: высокомолекулярные парафины -20-60%; селикагелевые смолы
-10-25%;асфальтены -до 5%; связанная нефть; оклюдированный газ.


В состав отложений входят и неорганические вещества :
механические примеси до 15 %; соли; вода 4- 49%.


Парафины, в основном представлены углеводородами с
числом атомов углерода в молекуле от 22 до 28. Молекулы н-алканов при
охлаждении формируют кристаллы. В кристалле они имеют форму плоских зигзагообразных
цепей высокомолекулярных н-алканов, параллельных между собой.


Средняя температура плавления нефтяных парафинов на
подавляющем большинстве залежей находится в пределах от 47—61 0 С В
широком диапазоне содержания парафинов средняя температура плавления изменяется
мало и составляет 52 0 С. Отклонение от среднего значения сравнительно
небольшое (±1,3...2,8° С). Это указывает на то, что состав нефтяных парафинов в
подавляющем большинстве залежей оказывается практически одинаков и мало зависит
от содержания парафинов в нефти.


Асфальтены и смолы относятся к поверхностно-активным компонентам
нефти. Содержание этих компонентов меняется в широких пределах. Присутствие
этих компонентов оказывает значительное влияние на процесс кристаллизации
парафинов. Асфалътены и смолы называют модификаторами кристаллической
структуры. В присутствии смол и асфалътенов происходит кристаллизация
парафинов, при которой из раствора выделяются недоразвитые монокристаллы,
возникшие из немногих центров кристаллизации. Они приобретают форму древовидных
и шарообразных образований, и молекулы смол либо встраиваются в кристаллическую
решетку парафина, либо адсорбируются на поверхности его кристаллов, тем самым
изменяют форму кристаллов. В результате получаются крупные кристаллы неправильной
формы.


Смолы неоднородны по своему составу. Они содержат
нафтеновые и ароматические элементы, парафиновые цепи разной длины и степени
разветвленности, а также гетеро - атомы серы, кислорода и азота.


В случае, когда в составе добываемой нефти преобладают
парафины, по мере подъема и охлаждения нефти увеличивается толщина отложений,
из-за интенсивной кристаллизации и формировании более прочной
крупнокристаллической структуры. Это обуславливает формирование профилей АСПО с
постоянным нарастанием толщины к устью скважины.


Связь между составом АСПО и составом добываемой нефти
выявлена на основе анализов. В составе АСПО парафинов и асфальтенов содержится
намного больше, чем в нефти. А по содержанию селикагелевых смол АСПО и нефть
мало отличаются.


Выявлена такая закономерность, что прямой связи между
содержанием парафина и интенсивностью его отложений нет. Исследованиями нефти
установлено, что отсутствие такой связи обусловлено, прежде всего существенным
различием состава твердых углеводородов парафина, а именно различием
соотношения ароматических, нафтеновых, и метановых соединений в
высокомолекулярной части углеводородов, которые при стандартных методах
исследованиях нефти не определяются. Компонентный состав отложений АСПО
представлен в таблице 5. Из таблицы видно, что по ЦДНиГ№1 в 81,2 % исследуемых
образцах асфальтенов содержится менее 5 % мас., в 89% исследуемых образцах
парафинов содержится 20- 60 % мас., в 86 % исследуемых образцах смол содержится
10-25 % мас.





Таблица 5. Компонентный состав отложений АСПО на
1.12.2003 г




3.5 Методы, используемые в по
предотвращению отложений АСПО




Наиболее часто АСПО образуются в скважинах имеющих
дебиты менее 20 м 3 /сут. Причем среди осложненных преобладают
скважины, имеющие дебит по жидкости до 5 м 3 /сут.


К мерам по предотвращению образования АСПО в
скважинном оборудовании относятся:


-       подбор и установление режима откачки,
обеспечивающего оптимальную степень дисперстности водонефтяного потока;



применение
скважинных насосов с увеличенным проходным сечением клапанов;



увеличение
производительности глубинных насосов, т.е. увеличение скорости подъема
жидкости.


Подбор режима откачки предусматривает такие условия,
чтобы предотвратить отложения парафина, В ряде случаев эффективно увеличение
глубины погружения насоса (увеличение глубины погружения насоса на 100м., увеличивает
температуру на приеме насоса на 3-4º С ), однако при этом несколько
увеличивается нагрузка на головку балансира , за счет дополнительного веса
штанг.


При выборе способа удаления АСПО необходимо иметь ввиду
следующее - универсального способа, пригодного для всех условий, до настоящего
времени не найдено. Инженерно-технологическая служба НГДУ « ЛН»
планирует и осуществляет мероприятия направленные на предотвращение и
ликвидацию АСПО с учетом конкретных геолого-физических условий, свойств
продукции скважины, состава АСПО, особенностей данной разработки месторождения,
наличие тех или иных технических средств, химических реагентов и т.д.
Интегральными критериями при выборе метода борьбы с АСПО являются экономические
критерии, в частности годовые затраты при использовании данного метода в
расчете на одну скважину. Несмотря на отмеченную необходимость индивидуального
подхода к конкретным скважинам, все же некоторые обобщенные рекомендации,
исходя из накопленного опыта, могут быть сделаны.


Все применяемые методы борьбы с АСПО могут быть
сведены в следующие группы методов: механические, химические, физические,
применение защитных покрытий




3.5.1 Механические методы борьбы с
АСПО и технология работ при их применении


Для категорий скважин, в которых зона отложений
начинается выше насоса и состав АСПО преимущественно парафинового типа,
наиболее дешевым и технологически эффективным является применение механического
метода борьбы с АСПО:


1. Центраторы-депарафинизаторы производства НГДУ «ЛН».


2. Скребки - центраторы производства НГДУ «Иркеннефть».


3. Скребки - центраторы производства НГДУ « Лениногорскнефть».


4. Плавающие скребки производства завода « Радиоприбор»



Центратор —депарафинизатор выполнен в виде двух
соосных конусов с обращенными друг к другу основаниями и цилиндрической
вставкой между ними, с расчетными геометрическими размерами. Глубина спуска
остеклованных НКТ составляет от устья до 1000 метров, центраторов от устья до 900 метров. Критическая скорость составляет 6 м/сек, при этом
сила сцепления парафина с поверхностью труб преодолевается скоростью потока. В
настоящее время центраторы-депарафинизаторы в НГДУ «Лениногорскнефть» заменяются
на скрепки – центраторы, как экономически более выгодные.


Скребок - центратор имеет двойное назначение. Он выполняет функции
скребка и предохраняет от износа систему «труба – штанга -муфта». При
применении скребков - центраторов вместе со штанговращателем достигается
предотвращение парафинизации и защита от износа насосных штанг, муфт, НКТ. Косые
пазы, выполненные по периметру рабочей поверхности скребка, обеспечивают
достаточный проток жидкости.


В НГДУ «Лениногорскнефть» скребки-центраторы испытываются
с 1999 года и за это время накоплен значительный опыт их применения. Очистка
поверхностей НКТ происходит при возвратно-поступательном и вращательном
движении скребка. При этом происходит соскабливание парафина со стенок труб в
процессе работы скважины.


В зависим
Обоснование выбора компоновки ШСНУ. Дипломная (ВКР). Геология.
Курсовая работа по теме Принципы управления социальной работой и их содержание
Первый Снег Пластов Сочинение 9 Класс
Реферат: Формирование тарифных систем
Реферат по теме Проточная цитометрия
Готовые Рефераты По Философии
Доклад по теме Италия: географические особенности и экономика
Сочинение По Картине Осенние Листья
Контрольная работа по теме Статус адвоката в Европе
Нравственный Выбор Определение Для Сочинения 15.3
Реферат На Тему Элементарные Функции
Менің Алға Қойған Мақсатым Тақырыбында Эссе
Контрольная работа по теме Особенности правового регулирования по охране результатов интеллектуальной деятельности
История Образования Антидопингового Комитета Реферат
Курсовые По Математике В Начальной Школе
Эссе Путешествие По России
Как Начать Писать Дипломную Работу Образец
Бесплатные Сочинения По Литературе
Реферат по теме Листковая печать леворадикальных организаций России в 1917 г.
Курсовая работа по теме Интернет - глобальная компьютерная сеть
Дипломная работа: Анализ деятельности органов власти по социальной защите населения. Скачать бесплатно и без регистрации
Реферат: Пневмония в правой нижней доле
Реферат: Sexual And Bodily Subjects Essay Research Paper
Курсовая работа: Социологические аспекты правомерного поведения

Report Page