Анализ и моделирование цифровых и аналоговых схем - Программирование, компьютеры и кибернетика контрольная работа

Анализ и моделирование цифровых и аналоговых схем - Программирование, компьютеры и кибернетика контрольная работа




































Главная

Программирование, компьютеры и кибернетика
Анализ и моделирование цифровых и аналоговых схем

Оценка риска статического сбоя по всем выходным переменным. Анализ цифровых схем по методу простой итерации и событийному методу. Моделирование аналоговых схем: метод узловых потенциалов и переменных состояния. Анализ цифровых схем по методам Зейделя.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство образования республики Беларусь
Учреждение образования "Полоцкий государственный университет"
Кафедра конструирования и технологии РЭС
По курсу " Теоретические основы САПР "
Задача №1. Оценка статического риска сбоя
Задание: для заданной схемы оценить риск статического сбоя по всем выходным переменным для заданного варианта изменения вектора входных переменных.
Заданный вариант изменения вектора входных переменных:
Для оценки риска статического сбоя необходимо разработать синхронную модель цифровой схемы в трехзначной логике. Математическая модель заданной схемы имеет вид:
При анализе трехзначных моделей значения всех переменных - входных и выходных вычисляются трижды:
1. Исходное значение вектора входных переменных X=(a,b,c) задано заданием; исходное значение вектора выходных переменных Y=(e,g) вычисляется по правилам двоичной логики;
2. Окончательное значение вектора входных переменных X=(a,b,c) задано заданием; окончательное значение вектора выходных переменных Y=(e,g) вычисляется по правилам двоичной логики;
3. Промежуточные значения входных переменных X=(a,b,c) определяются по следующему правилу: если исходное значение входной переменной совпадает с окончательным, то промежуточное равно исходному и окончательному. Если исходное значение входной переменной не совпадает с окончательным, т.е. имеет место переключение входного сигнала в течение такта модельного времени, то промежуточное равно 2 (неопределенное состояние переключения). Промежуточные значения выходных переменных Y=(e,g) рассчитываются по правилам трехзначной логики. Статический риск сбоя по выходной переменной имеет место в случае, если сочетание значений этой переменной в исходном, промежуточном и окончательном состоянии имеют вид 0-2-0 или 1-2-1.
Правила выполнения основных логических операций И, ИЛИ, НЕ в двоичной и трехзначной логике для произвольных переменных а и b приведены в таблице 1:
Результат анализа трехзначной модели заданной схемы приведен в таблице 2.
Таким образом, результат расчета по выходным переменным e и g показывает наличие статистического риска сбоя.
Задача №2. Анализ цифровых схем по методу просто й итерации и событийному методу
Задание: выполнить анализ заданной схемы по методу простой итерации и событийному методу для заданного изменения вектора входных переменных.
Заданный вариант изменения вектора входных переменных:
X=(a,b,c,d,e) меняет свое значение с 00100 на 11101
Для выполнения анализа схемы необходимо разработать ее синхронную модель в двоичной логике. Математическая модель заданной схемы имеет вид:
Для реализации анализа по методу простой итерации необходимо задать начальное приближение для вектора выходных переменных Y 0 =(f,g,h,p,q). Для расчета начальных приближений вектора выходных переменных воспользуемся начальным значением вектора входных переменных X=(a,b,c,d,e)=(00100), предварительно расположив уравнения в порядке прохождения сигналов по схеме:
Метод простой итерации состоит в выполнении итераций по формуле:
где Y i - значение вектора Y на i -й итерации, т.е. при вычислении Y 1 в правые части уравнений модели поставляются значения выходных переменных из начального приближения Y 0 , при вычислении Y 2 - значения из результата первой итерации Y 1 и так далее. Если Y i =Y i-1 , то решение найдено; если
Y i Y i-1 , то выполняется новая итерация; если итерационный процесс не сходится, то это свидетельствует об ошибках проектирования схемы устройства, вызывающих неустойчивость его состояния.
Результат анализа заданной схемы по методу простой итерации приведен в таблице 3.
Из таблицы 3 видно, что потребовалось два раза обращаться к каждому из пети уравнений модели, прежде чем результат второй итерации, совпадающий с результатом первой итерации, показал, что решение найдено.
Таким образом, искомое значение вектора выходных переменных при изменении X=(a,b,c,d,е) с 00100 на 11101 для заданной схемы равно:
При использовании событийного метода вычисления на каждой итерации выполняются только по уравнениям активизированных элементов, т.е. элементов, у которых хотя бы на одном входе произошло событие (изменилась входная переменная). В алгоритме событийного метода на каждом шаге вычислительного процесса имеется своя группа активизированных элементов.
В заданном варианте изменения вектора входных переменных изменяются только значения переменных а, b и е , следовательно, на первой итерации при реализации событийного алгоритма анализа должны быть пересчитаны только выходные переменные f и h , в правые части уравнений которых входят аргументами b и d . Если по результатам вычисления значения f и h совпадут с начальным приближением, то решение будет найдено, если хотя бы одна из этих переменных изменится, то на второй итерации должны быть пересчитаны те выходные переменных, в правые части уравнений которых входят изменившиеся в результате первой итерации переменные. Процесс продолжается до тех пор, пока в результате очередной итерации значения рассчитываемых переменных не совпадут с их предыдущими значениями, т.е. до выполнения условия Y i =Y i-1 .
Результат анализа заданной схемы по методу простой итерации приведен в таблице 4.
Как видно из таблицы 4, на 6-ой итерации результат расчета переменной q совпал с ее предыдущим значением, следовательно решение найдено.
Таким образом, искомое значение вектора выходных переменных при изменении X=(a,b,c,d) с 0110 на 0011 при расчете по событийному методу для заданной схемы совпадает с результатом анализа по методу простой итерации и равно:
Однако, при вычислении по методу простой итерации, потребовалось на каждой итерации вычислять все выходные переменные, т.е. объем вычислений составил 66=36 операций. Тот же результат при использовании событийного метода потребовал значительно меньшего объема вычислений, а именно выполнения 8 операций. Таким образом, трудоемкость событийного метода значительно меньше.
Задача №3. Анализ ц ифровых схем по методам Зейделя
Задание: выполнить анализ заданной схемы по методам Зейделя для заданного изменения вектора входных переменных.
Заданный вариант изменения вектора входных переменных:
X=(a,b,c,d,e) меняет свое значение с 00100 на 11101
Математическая модель заданной схемы имеет вид:
При реализации анализа по методу Зейделя при вычислении очередного из элементов вектора Y i в правую часть уравнений системы там, где это возможно, подставляются не элементы вектора Y i-1 , а те элементы вектора Y i , которые уже вычислены к данному моменту, т.е. итерации выполняются по формуле: Y i = (Y i ,Y i-1 , X).
Результат вычислений по методу Зейделя без ранжирования, для исходного произвольного порядка уравнений модели представлен в таблице 5. Для организации вычислений использовалось значение начального приближения вектора выходных переменных Y 0 , полученное в задаче 2.
Задача №4. Моделирование аналоговых схем (метод узловых потенциалов)
Цель: освоение метода узловых потенциалов моделирования аналоговых схем.
Задание: для заданного варианта схемы задачи №6 разработать модель топологии с использованием метода узловых потенциалов: построить матрицу «узел-ветвь», записать топологические уравнения в общем виде; в развернутой матричной форме; в виде системы уравнений по законам Кирхгофа.
В методе узловых потенциалов в вектор базисных координат включаются потенциалы всех узлов схемы, за исключением одного узла, принимаемого за опорный. Топологические уравнения - это уравнения закона токов Кирхгофа, записанные для узлов схемы, и уравнения связи вектора напряжений ветвей U с вектором узловых потенциалов:
где А - матрица «узел-ветвь»; A T - транспонированная матрица «узел-ветвь»; I - вектор токов ветвей. Строки матрицы соответствуют узлам, а столбцы - ветвям схемы. В столбце i -той ветви записываются единицы на пересечении со строками узлов, при чем +1 соответствует узлу, в который ток i -той ветви втекает, а -1 соответствует узлу, из которого этот ток вытекает. Матрица «узел-ветвь» для схемы с введенными обозначениями узлов, полученной в задаче 6 и показанной на рисунке 10, имеет вид, представленный на рисунке 14 (узел 8 принят в качестве опорного).
Запишем топологические уравнения по закону токов Кирхгофа
- в виде системы уравнений, которая получена из матричной формы умножением вектора-столбца токов ветвей схемы на матрицу «узел-ветвь»:
Запишем топологические уравнения по закону напряжений через узловые потенциалы:
A T +U=0 ; - в развернутой матричной форме (в транспонированной матрице столбцы соответствуют строкам исходной матрицы «узел-ветвь»):
- в виде системы уравнений, которая получена из матричной формы умножением вектора-столбца узловых потенциалов на матрицу «узел-ветвь» после приведения ее к виду U=-A T :
Таким образом, модель топологии заданной схемы получена с использованием метода узловых потенциалов в виде двух систем уравнений - по закону токов Кирхгофа и по закону напряжений через узловые потенциалы.
Задача №5. Моделирование аналоговых схем (метод переменных состояния)
Цель: освоение метода узловых потенциалов моделирования аналоговых схем.
Теория, методы и примеры решения: раздел 3.3.2.3 курса лекций.
Задание: для заданного варианта схемы задачи №6 разработать модель топологии с использованием метода переменных состояния: построить граф, нормальное фундаментальное дерево и матрицу контуров и сечений. Записать топологические уравнения в общем виде; в развернутой матричной форме; в виде системы уравнений по законам Кирхгофа. Записать окончательную математическую модель схемы в виде системы уравнений, в которой ёмкостные токи и индуктивные напряжения выражены явно и заменены производными переменных состояния.
Базисными координатами в этом методе являются переменные состояния, т.е. фазовые переменные, непосредственно характеризующие запасы энергии в элементах электрической схемы. К таким переменным относятся независимые друг от друга емкостные напряжения и индуктивные токи. Исходными топологическими уравнениями являются те же уравнения, что и в табличном методе:
Матрицу М контуров и сечений в методе переменных состояния формируют на основе построения нормального дерева графа схемы. Нормальным деревом называют фундаментальное дерево, в которое включение ветвей производится не произвольно, а в следующем порядке: ветви источников напряжения, емкостные, резистивные, индуктивные, источников тока. Использование нормального дерева облегчает дальнейшее преобразование исходных уравнений с целью получения нормальной формы Коши.
В графе схемы, приведенной на рисунке 12, построенное фундаментальное дерево является нормальным. Топологические уравнения в общем виде и в развернутой матричной форме были получены при решении задачи 6. Топологические уравнения в виде системы уравнений по законам Кирхгофа, полученные с использованием матрицы контуров и сечений, построенной в задаче №6, имеют вид:
Для получения окончательной ММС используют компонентные уравнения. При их преобразовании стремятся получить уравнения, выражающие емкостные токи I С и индуктивные напряжения U L через переменные состояния. Далее, заменяя I C и U L производными переменных состояния, получают окончательную ММС.
Запишем компонентные уравнения (уравнения сопротивления, емкости и индуктивности) в общем виде:
В заданной схеме нет индуктивных ветвей, поэтому уравнение индуктивности нам не понадобится.
В левых частях уравнений второй системы необходимо заменить I Cj на С j dU Cj /dt , а в правые части вместо I Ri подставить величины U Ri , выраженные из уравнений первой системы путем деления на R i . Окончательная форма ММС по методу переменных состояния имеет вид:
Таким образом, с использованием метода переменных состояния получена окончательная полная ММС заданной схемы, объединяющая в себе компонентные и топологические уравнения схемы.
Графический ввод схемы и симуляция в Quartus II. Основные логические элементы. Описание логических схем при помощи языка AHDL, его элементы. Зарезервированные ключевые слова. Моделирование цифровых схем с использованием параметрических элементов. курсовая работа [1,7 M], добавлен 07.06.2015
Проектирование модуля ввода/вывода аналоговых, дискретных и цифровых сигналов, предназначенного для сбора данных со встроенных дискретных и аналоговых входов с последующей их передачей в сеть. Расчет временных задержек. Выбор резисторов на генераторе. курсовая работа [307,1 K], добавлен 25.03.2012
Изучение логических операций и правил их преобразований. Моделирование цифровых схем, состоящих из логических вентилей. Способы описания работы логического устройства - таблицы истинности, временные диаграммы, аналитические функции, цифровые схемы. лабораторная работа [2,1 M], добавлен 02.03.2011
Нейрокомпьютер как система. История его создания и совершенствования, разновидности и назначение нейрочипов. Методика разработки алгоритмов и схем аналоговых нейрокомпьютеров для выполнения разных задач обработки изображений, порядок их моделирования. дипломная работа [462,3 K], добавлен 04.06.2009
Моделирование схем с резистивным нелинейным элементом. Исследование характеристик транзистора. Графический ввод, редактирование и анализ принципиальных схем в режимах анализа переходных процессов, частотного анализа и анализа в режиме постоянного тока. контрольная работа [676,7 K], добавлен 12.03.2011
Преобразование аналоговой формы первичных сигналов для их обработки с помощью ЭВМ в цифровой n-разрядный код, и обратное преобразование цифровой информации в аналоговую. Практическая реализация схем аналого-цифровых и цифро-аналоговых преобразователей. реферат [89,2 K], добавлен 02.08.2009
Создание программного обеспечения для эмулирования виртуальной рабочей среды для сборки, отладки и проверки функционирования устройств на базе цифровых интегральных микросхем. Возможности применения программы в учебном процессе, ее характеристики. курсовая работа [2,2 M], добавлен 09.06.2010
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Анализ и моделирование цифровых и аналоговых схем контрольная работа. Программирование, компьютеры и кибернетика.
Курсовая работа по теме Проблемы религиозного освоения мира. Формирование религиозных представлений
Реферат: Деятельность – психология общения. Скачать бесплатно и без регистрации
Магистерская Диссертация На Предприятии
Реферат по теме Выход фирмы на рынок
Курсовая работа по теме Методи та форми активізації навчально-пізнавальної діяльності студентів
Дипломная работа по теме Мерчандайзинг в организации продвижения товаров в торговых сетях
Сочинение По Пьесе Гроза Островского Кратко
Курсовая работа по теме Получение бифазной системы ГФ/В-ТКФ из аморфного фосфата кальция
Реферат: Агропромышленный комплекс Новосибирской области
Курсовая работа: Автоматизация бухгалтерского учета. Скачать бесплатно и без регистрации
Дипломная работа по теме Мировое соглашение как процессуальный институт
Управление Текущими Затратами Предприятия Курсовая
Реферат: Нормы делового общения
Научный Руководитель Диссертации Требования
Всегда Ли Надо Избегать Конфликтов Сочинение
Реферат На Тему Иоффе Г.З. "Семнадцатый Год. Ленин, Керенский, Корнилов". "Девять Решающих Голосов"
Реферат По Математике Комбинация Тел
Курсовая работа: Национальная экономика: измерение результатов и уровня цен. Скачать бесплатно и без регистрации
Преступление И Наказание В Афинах Реферат
Реферат: Правовые основы организации государственной власти в субъектах Российской Федерации
Анализ эффективности системы менеджмента качества на предприятии - Менеджмент и трудовые отношения курсовая работа
Работодатель как субъект трудового права - Государство и право курсовая работа
Прогрессирующая стенокардия - Медицина история болезни


Report Page