ALUMINIUM COPPER ALLOYS

ALUMINIUM COPPER ALLOYS

https://search.aepiot.com/search.html?q=ALUMINIUM%20COPPER%20ALLOYS

MultiSearch Tag Explorer

aéPiot

Go

Alloy thumbnail

Alloy

An alloy is a mixture of chemical elements of which in most cases at least one is a metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have properties that differ from those of the pure elements from which they are made. The vast majority of metals used for commercial purposes are alloyed to improve their properties or behavior, such as increased strength, hardness or corrosion resistance. Metals may also be alloyed to reduce their overall cost, for instance alloys of gold and copper. A typical example of an alloy is 304 grade stainless steel which is commonly used for kitchen utensils, pans, knives and forks. Sometime also known as 18/8, it as an alloy consisting broadly of 74% iron, 18% chromium and 8% nickel. The chromium and nickel alloying elements add strength and hardness to the majority iron element, but their main function is to make it resistant to rust/corrosion. In an alloy, the atoms are joined by metallic bonding rather than by covalent bonds typically found in chemical compounds. The alloy constituents are usually measured by mass percentage for practical applications, and in atomic fraction for basic science studies. Alloys are usually classified as substitutional or interstitial alloys, depending on the atomic arrangement that forms the alloy. They can be further classified as homogeneous (consisting of a single phase), or heterogeneous (consisting of two or more phases) or intermetallic. An alloy may be a solid solution of metal elements (a single phase, where all metallic grains (crystals) are of the same composition) or a mixture of metallic phases (two or more solutions, forming a microstructure of different crystals within the metal). Examples of alloys include red gold (gold and copper), white gold (gold and silver), sterling silver (silver and copper), steel or silicon steel (iron with non-metallic carbon or silicon respectively), solder, brass, pewter, duralumin, bronze, and amalgams. Alloys are used in a wide variety of applications, from the steel alloys, used in everything from buildings to automobiles to surgical tools, to exotic titanium alloys used in the aerospace industry, to beryllium-copper alloys for non-sparking tools.

In connection with: Alloy

Alloy

Description combos: pure iron for commercial rust used are constituents grains

Aluminium–silicon alloys

Aluminium–silicon alloys or Silumin is a general name for a group of lightweight, high-strength aluminium alloys based on an aluminum–silicon system (AlSi) that consist predominantly of aluminum – with silicon as the quantitatively most important alloying element. Pure AlSi alloys cannot be hardened, the commonly used alloys AlSiCu (with copper) and AlSiMg (with magnesium) can be hardened. The hardening mechanism corresponds to that of AlCu and AlMgSi. AlSi alloys are by far the most important of all aluminum cast materials. They are suitable for all casting processes and have excellent casting properties. Important areas of application are in car parts, including engine blocks and pistons. In addition, their use as a functional material for high-energy heat storage in electric vehicles is currently being focused on.

In connection with: Aluminium–silicon alloys

Aluminium

silicon

alloys

Title combos: alloys silicon alloys silicon Aluminium

Description combos: consist currently consist and for group name used casting

Aluminium bronze thumbnail

Aluminium bronze

Aluminium bronze is a type of bronze in which aluminium is the main alloying metal added to copper (for alloys with aluminum as the major component, see aluminum copper alloy), in contrast to standard bronze (copper and tin) or brass (copper and zinc). A variety of aluminium bronzes of differing compositions have found industrial use, with most ranging from 5% to 11% aluminium by weight, the remaining mass being copper; other alloying agents such as iron, nickel, manganese, and silicon are also sometimes added to aluminium bronzes.

In connection with: Aluminium bronze

Aluminium

bronze

Title combos: Aluminium bronze

Description combos: ranging bronze have aluminium see use ranging copper alloying

List of copper alloys thumbnail

List of copper alloys

Copper alloys are metal alloys that have copper as their principal component. They have high resistance against corrosion. Of the large number of different types, the best known traditional types are bronze, where tin is a significant addition, and brass, using zinc instead. Both of these are imprecise terms. Latten is a further term, mostly used for coins with a very high copper content. Today the term copper alloy tends to be substituted for all of these, especially by museums. Copper deposits are abundant in most parts of the world (globally 70 parts per million), and it has therefore always been a relatively cheap metal. By contrast, tin is relatively rare (2 parts per million), and in Europe and the Mediterranean region, and even in prehistoric times had to be traded considerable distances, and was expensive, sometimes virtually unobtainable. Zinc is even more common at 75 parts per million, but is harder to extract from its ores. Bronze with the ideal percentage of tin was therefore expensive and the proportion of tin was often reduced to save cost. The discovery and exploitation of the Bolivian tin belt in the 19th century made tin far cheaper, although forecasts for future supplies are less positive. There are as many as 400 different copper and copper alloy compositions loosely grouped into the categories: copper, high copper alloy, brasses, bronzes, cupronickel, copper–nickel–zinc (nickel silver), leaded copper, and special alloys.

In connection with: List of copper alloys

List

of

copper

alloys

Title combos: List of List of copper copper of alloys List

Description combos: made Europe 70 75 ores to large per content

Aluminium alloy thumbnail

Aluminium alloy

An aluminium alloy (UK/IUPAC) or aluminum alloy (NA; see spelling differences) is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc. There are two principal classifications, namely casting alloys and wrought alloys, both of which are further subdivided into the categories heat-treatable and non-heat-treatable. About 85% of aluminium is used for wrought products, for example rolled plate, foils and extrusions. Cast aluminium alloys yield cost-effective products due to their low melting points, although they generally have lower tensile strengths than wrought alloys. The most important cast aluminium alloy system is Al–Si, where the high levels of silicon (4–13%) contribute to give good casting characteristics. Aluminium alloys are widely used in engineering structures and components where light weight or corrosion resistance is required. Alloys composed mostly of aluminium have been very important in aerospace manufacturing since the introduction of metal-skinned aircraft. Aluminium–magnesium alloys are both lighter than other aluminium alloys and much less flammable than other alloys that contain a very high percentage of magnesium. Aluminium alloy surfaces will develop a white, protective layer of aluminium oxide if left unprotected by anodizing or correct painting procedures. In a wet environment, galvanic corrosion can occur when an aluminium alloy is placed in electrical contact with other metals with more positive corrosion potentials than aluminium, and an electrolyte is present that allows ion exchange. Also referred to as dissimilar-metal corrosion, this process can occur as exfoliation or as intergranular corrosion. Aluminium alloys can be improperly heat treated, causing internal element separation which corrodes the metal from the inside out. Aluminium alloy compositions are registered with The Aluminum Association. Many organizations publish more specific standards for the manufacture of aluminium alloys, including the SAE International standards organization, specifically its aerospace standards subgroups, and ASTM International.

In connection with: Aluminium alloy

Aluminium

alloy

Title combos: Aluminium alloy

Description combos: foils as principal SAE the melting system levels alloys

2219 aluminium alloy

2219 aluminium alloy is an alloy in the wrought aluminium-copper family (2000 or 2xxx series). It can be heat-treated to produce tempers with higher strength but lower ductility. The aluminium-copper alloys have high strength, but are generally less corrosion resistant and harder to weld than other types of aluminium alloys. To compensate for the lower corrosion resistance, 2219 aluminium can be clad in a commercially pure alloy such as 1050 or painted. This alloy is commonly formed by both extrusion and forging, but is not used in casting. The 2219 aluminium alloy in particular has high fracture toughness, is weldable and resistant to stress corrosion cracking, therefore it is widely used in supersonic aircraft skin and structural members. The Space Shuttle Standard Weight Tank was also fabricated from the 2219 alloy. The Columbus module on the International Space Station also used 2219 aluminium alloy with a cylinder thickness of 4 mm, which was increased to 7 mm for the end cones. The dome and skirt of the Cupola Module on the International Space Station also uses 2219 aluminium alloy. Alternate designations include AlCu6Mn and A92219. It is described in the following standards: ASTM B 209: Standard Specification for Aluminium and Aluminium-Alloy Sheet and Plate ASTM B 211: Standard Specification for Aluminium and Aluminium-Alloy Bar, Rod, and Wire ASTM B 221: Standard Specification for Aluminium and Aluminium-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes ISO 6361: Wrought Aluminium and Aluminium Alloy Sheets, Strips and Plates

In connection with: 2219 aluminium alloy

2219

aluminium

alloy

Title combos: alloy aluminium 2219 aluminium alloy

Description combos: 221 the the not aircraft ASTM is and for

Aluminium–copper alloys

Aluminium–copper alloys (AlCu) are aluminium alloys that consist largely of aluminium (Al) and traces of copper (Cu) as the main alloying elements. Important grades also contain additives of magnesium, iron, nickel and silicon (AlCu(Mg, Fe, Ni, Si)), often manganese is also included to increase strength (see aluminium–manganese alloys). The main area of application is aircraft construction. The alloys have medium to high strength and can be age hardened. They are both wrought alloy. Also available as cast alloy. Their susceptibility to corrosion and their poor weldability are disadvantageous. Duralumin is the oldest variety in this group and goes back to Alfred Wilm, who discovered it in 1903. Aluminium could only be used as a widespread construction material thanks to the aluminium–copper alloys, as pure aluminium is much too soft for this and other hardenable alloys such as aluminium–magnesium–silicon alloys (AlMgSi) or the naturally hard (non-hardenable) alloys. Aluminium–copper alloys were standardised in the 2000 series by the international alloy designation system (IADS) which was originally created in 1970 by The Aluminum Association. The 2000 series includes 2014 and 2024 alloys used in airframe fabrication. Copper alloys with aluminium as the main alloying metal are known as aluminium bronze, the amount of aluminium is generally less than 12%.

In connection with: Aluminium–copper alloys

Aluminium

copper

alloys

Title combos: Aluminium copper Aluminium copper alloys

Description combos: alloys both are increase hardened airframe Also high be

Quick Access

Tag Explorer


Partajare

Discover Fresh Ideas in the Universe of aéPiot

MultiSearch | Search | Tag Explorer

SHEET MUSIC | DIGITAL DOWNLOADS

News | LIVE TV

INSTAPAPER

© aéPiot - MultiSearch Tag Explorer. All rights reserved.

Hosted by HOSTGATE

Headlines World

aéPiot.com

aéPiot.ro

allGraph




Report Page