А сочный минет можно считать зарядкой

А сочный минет можно считать зарядкой




⚡ ПОДРОБНЕЕ ЖМИТЕ ЗДЕСЬ 👈🏻👈🏻👈🏻

































А сочный минет можно считать зарядкой
Можно ли заряжать смартфон, наушники или часы более мощной зарядкой? Вольты и амперы для «чайников»
Можно ли заряжать смартфон, наушники или часы более мощной зарядкой? Вольты и амперы для «чайников»
Последнее обновление: 6 месяцев назад
Если вам понравилась эта статья, присоединяйтесь к нам на Patreon - там еще интересней!
новых последующих комментариях новых ответах на мои комментарии
Последний раз редактировалось 1 месяц назад Артем ем
Последний раз редактировалось 1 месяц назад Артем ем
Последний раз редактировалось 6 месяцев назад Александр ем
Последний раз редактировалось 1 год назад innettvl@gmail.com ем
Новые интересные обзоры с еженедельной рассылкой Deep-Review:
Перейдите во Внешний вид> Настроить> , чтобы настроить это.Перейти к внешнему виду > настроить > подписаться всплывающие установить это.
Я часто встречаю в интернете одни и те же вопросы, связанные с зарядкой гаджетов. Звучат они примерно так:
— У меня есть телефон, с которым шла зарядка на 5 вольт и 1 ампер ( 5V и 1A ). Можно ли заряжать его от более мощного блока питания на 5V и 3A ? Не вредно ли это?
— Мои Bluetooth-наушники шли без блока питания в комплекте, а в инструкции сказано, что заряжать их нужно от USB-разъема компьютера, мощностью 5V и 0.5A . Что будет если я подключу к ним блок питания на 5V и 2A ? Не сгорят ли наушники?
Если вы также задавались подобными вопросами, то, скорее всего, находили ответ, который звучал примерно так:
Устройство можно заряжать любой зарядкой на 5 вольт , вне зависимости от количества ампер. Оно не возьмет больше тока, чем ему нужно.
Несмотря на то, что это правильный ответ, многих он не удовлетворяет, так как не совсем понятно, что значит фраза «не возьмет больше ампер, чем нужно».
Значит ли это, что блок питания на 5V и 3A будет силой «заталкивать» в несчастный смартфон очень много тока, но смартфон будет сопротивляться этому, временами нагреваясь, как печка? А может всё дело в «умном» блоке питания, который вначале «спросит» устройство, сколько ампер ему нужно, а затем выдаст соответствующий ток?
Если мы выбираем первый вариант, то как-то не очень радует такая перспектива. Начинаешь прямо ощущать то давление, которое испытывает гаджет, сопротивляясь сильному току. Кажется, рано или поздно он не выдержит этого и даст сбой.
А если выбирать второй вариант, то появляется сомнение — а действительно ли моя зарядка достаточно умная и будет ли она что-то выяснять с устройством? А если она глупая или мое устройство «не говорит» на ее языке и тогда она просто начнет заталкивать силой 3 ампера тока?
На самом деле, какой бы из этих вариантов вы ни выбрали, это представление будет неверным. В реальности из блока питания в USB-кабель просто не выйдет больше тока (больше ампер), чем нужно смартфону, часам или наушникам. И дело не в умном блоке питания, а в законах природы .
Об этом, собственно, я бы и хотел рассказать подробнее, чтобы не просто дать короткий ответ и оставить сомнения, а объяснить на фундаментальном уровне, что в действительности происходит, когда мы подключаем более мощный блок питания, чем тот, на который рассчитано наше устройство.
Не так давно по интернету гуляло шокирующее открытие. Оказалось, человека убивают не 220 вольт из розетки, а количество ампер ! Это «открытие» сразу же напомнило мне анекдот о тёще, которая поскользнулась и упала на нож, и так 8 раз подряд…
Естественно, убивает нож ( амперы ). Но сам по себе нож совершенно безопасен, если только его не возьмет в руку человек, способный нанести удар. И чем сильнее будут его мышцы ( вольты ), тем опаснее будет нож ( амперы ). В слабых ручках годовалого ребенка ( очень мало вольт ) даже острый нож ( очень много ампер ) не будет представлять для человека никакой угрозы.
И чтобы продолжить разговор, нам нужно сразу же определиться с терминами. Если вы хорошо знаете, что такое вольты и амперы , а также прекрасно понимаете закон Ома , тогда не думаю, что эта статья будет вам интересна. Да и вопросов таких у вас не должно возникать. Поэтому сразу предупреждаю, фраза «для чайников» в заголовке указана неспроста.
Представьте себе обычный кусок провода. Скажите, в нем есть ток? Думаю, вы не станете проводить эксперименты, подключая этот провод к лампочке, чтобы ответить на мой вопрос. Очевидно, там нет никакого тока.
Думаю, многие знают, что ток — это движение электронов . Если по проводу потекут/поползут электроны, в нем автоматически появится и ток. Но откуда тогда берутся электроны в проводе? Их туда заталкивает блок питания или батарейка?
На самом деле, электроны, которые будут ползти по нашему проводу, уже находятся внутри него. Ведь провод, как и всё в нашем мире, состоит из атомов . И эти атомы, словно детальки конструктора, бывают разными.
Взять, к примеру, золото. Вот вы держите в руке слиток золота и всем сразу понятно, что это не кусок алюминия. Но если дробить этот кусок на более мелкие кусочки, то до каких пор вещество будет оставаться золотом? Правильный ответ — до размера одного атома! И посмотрев на два разных атома, мы без проблем определим, где из них — золото, а где — алюминий.
И дело не в том, что атом золота желтый или блестит на солнце, а атом водорода — жидкий и прозрачный. Конечно нет. Всё дело в ядре атома , а точнее, в количестве протонов , из которых это ядро состоит. Если в атоме будет 79 протонов , мы знаем, что это золото, а если — 29 протонов , то это медь. И сколько бы электронов мы ни отрывали от атома, атом всегда остается золотом или медью.
Если бы мы смогли как-то добавить 4 протона к атому меди, их бы стало 33 и этот атом уже бы не имел никакого отношения к меди, он стал бы мышьяком. К слову, эти циферки (количество протонов) и указываются в таблице Менделеева возле каждого элемента.
Так вот, протоны (синие шарики на картинке выше) имеют определенный заряд , мы условно называем его положительным («плюсом»). А вокруг ядра парят электроны, также обладающие зарядом, но противоположным заряду протона. Мы называем его отрицательным («минусом»). Именно благодаря электронам атомы и могут соединяться друг с другом, создавая все предметы, вещества и материю. Эти электроны, как липучки, склеивают атомы друг с другом:
Протоны всегда притягивают к себе электроны («плюс» и «минус» всегда притягиваются). Но чем больше энергии у электрона, тем дальше он может отлетать от ядра с протонами. А чем дальше он от ядра, тем слабее с ним связь. Такой электрон может вообще оторваться от ядра и улететь с концами, ведь его отталкивают другие электроны («минус» и «минус» всегда отталкиваются).
Так вот, если мы повлияем на провод какой-то силой, электроны, расположенные дальше всего от ядра, начнут отрываться от атомов, проползать небольшое расстояние и присоединяться к другим атомам, а их электроны, соответственно, оторвутся и отлетят к следующим атомам:
Повторюсь, это движение электронов, направленное в одну сторону, и называется током .
Ток — это движение электронов . Но как нам описывать силу тока? Можно, конечно, просто называть количество проползающих по проводу электронов за одну секунду.
Например, говорить: «Не касайся этого провода, там за секунду проплывает 12 миллионов триллионов электронов!», или писать на табличке: «Осторожно, здесь проползает за секунду 30 квинтиллионов электронов».
Согласитесь, звучит как-то странно. Мы даже не можем осознать или представить эти миллионы триллионов или квинтиллионы.
Поэтому мы решили не считать электроны по одному, а сразу учитывать их группами или «пачками». Ведь что толку нам от заряда одного электрона? Он ничтожно мал и не способен проделать никакой полезной работы.
В такую «пачку» (группу) включили 6 241 509 074 460 762 607 электронов . И суммарный заряд этих ~6 квинтиллионов электронов, проходящих по проводу за 1 секунду, решили назвать ампером :
Если мы говорим, что по проводу идет ток 2 ампера (2А), это значит, что там физически за 1 секунду проползает около 12 квинтиллионов электронов (2*6.241).
Кстати, вы наверное заметили, что я использую разные слова для описания движения электронов: проползают , проплывают , пролетают и т.д. Делаю я это потому, что не знаю, каким словом лучше описать такое движение.
Кто-то может подумать, что электроны движутся по проводу с сумасшедшей скоростью, ведь лампочка включается моментально, как только мы прикасаемся к выключателю. На самом же деле, называть эту скорость «сумасшедшей», мягко говоря, не совсем правильно.
Когда вы включаете блок питания в розетку и подключаете по кабелю свой смартфон, то один конкретный электрон, «вылетевший» в это мгновение из блока питания в провод, попадет непосредственно в сам смартфон где-то через 33 минуты . Да, он будет продвигаться вперед не более, чем на полмиллиметра в секунду .
Но почему тогда ток моментально попадает из точки А в точку Б? Ровно по той же причине, почему вода в вашем кране начинает течь мгновенно, как только вы открываете кран, хотя в реальности она должна пройти очень длинный путь.
Электроны уже находятся в проводе и как только первый электрон «заходит» в провод, он выталкивает ближайший электрон, уже находившийся там, а тот сразу же «толкает» следующий. Получается, что ровно в тот момент, когда первый электрон «залетал» в провод, на другом конце вылетал последний (крайний) электрон.
Блок питания на 1А мы считаем слабым, называя такую зарядку «медленной». Но на самом деле, хватит и 5% от этого тока ( 0,05А ), чтобы убить человека. Тем не менее, даже блок питания на 5А (в 100 раз больше электронов, чем нужно для остановки сердца) для нас совершенно безопасен. Почему же так происходит?
Думаю, вы обратили внимание, что я постоянно говорил о какой-то силе, которая нужна, чтобы толкать электроны вперед по проводу. Эта сила называется напряжением и измеряется она в вольтах .
Вспомните, что одинаковые заряды отталкиваются («минус» и «минус» или два электрона). Так вот, если мы каким-то образом соберем очень много одинаковых зарядов (электронов) в одном месте, они будут пытаться оттолкнуться друг от друга. Чем больше их будет, тем сильнее будет сила, которая будет пытаться их вытолкнуть. И как только мы подключим к этому месту провод, эта сила моментально начнет выталкивать электроны, которых собралось в избытке.
Один ампер — это очень много тока. Его хватит, чтобы наверняка убить человека, но для этого нужно сначала как-то «протолкнуть» эти 6 квинтиллионов электронов внутрь тела через кожу. И не просто протолкнуть, а сделать это за одну секунду.
Потребуется толкать электроны очень усердно. Нужно напряжение не 5 вольт , а что-то ближе к 3000 вольт . И это еще сильно зависит от состояния кожи, влажности и других условий. Если же мы хотим протолкнуть за 1 секунду всего 0,05 ампер (что уже может быть опасной «дозой» электронов), то хватит и напряжения в 150 вольт .
В нескольких штатах Америки до сих пор применяется смертная казнь в виде электрического стула . Так вот, с его помощью пытаются протолкнуть в тело человека за 1 секунду 5 ампер тока. Чтобы упростить задачу, на голову осужденному кладут губку, смоченную токопроводящим раствором, чтобы электронам было легче пройти через кожу. И при всём этом требуется 2700 вольт напряжения!
Таким образом, вольты и амперы неразрывно связаны друг с другом. Амперы — это множество электронов, проходящих через точку за 1 секунду, а вольты — это сила, с которой эти электроны выталкиваются.
Теперь, понимая что такое амперы и вольты, мы подошли к главному вопросу.
Если смартфон, наушники или фитнес-браслет выдерживают максимум 1А, тогда что произойдет с таким устройством, если мы сможем как-то заталкивать в него по 2 ампера в секунду? Естественно, такое устройство просто сгорит.
Но вся загвоздка в том, что сделать это невозможно . Как невозможно спрыгнуть с крыши дома и «ползти» вниз по воздуху со скоростью 1 сантиметр в час, так и невозможно затолкнуть в устройство больше ампер.
Чтобы осознать это, давайте на секундочку забудем о сложной технике и возьмем банальный крохотный светодиод («лампочку»). Чтобы нагляднее продемонстрировать, я придумал светодиод, который работает от 5 вольт (для реальных светодиодов нужно в среднем 2-3 вольта):
Он будет работать исправно, если через него будет проходить ток с силой около 10 мА (1 миллиампер — это одна тысячная доля ампера или 0.001А).
А теперь давайте подключим к нему блок питания мощностью 5V и 2A. Как вы думаете, что произойдет?
Логика подсказывает, что от такого блока питания нашу лампочку просто разорвет! Ведь сила тока блока питания превышает допустимый ток лампочки в 200 раз (светодиоду нужен ток 10 мА или 0.01А, а блок питания рассчитан на 2000 мА или 2А).
Но в реальности лампочка будет прекрасно работать, не ощущая никакого дискомфорта! Ведь по ней будет протекать ток 10 мА вместо ожидаемых 2000 мА ! В чем же здесь подвох? Неужели блок питания настолько умный, что как-то согласовал нужный ток и вместо 2А отправил к лампочке 0.01А!? Конечно же, нет.
Дело в том, что лампочка сопротивляется движению электронов. И всё, что нас окружает, в той или иной степени сопротивляется движению электронов.
Когда мы подключили лампочку к блоку питания на 5 вольт, он моментально со всей своей силы (с напряжением в 5 вольт ) начал толкать все электроны ( 2 ампера ) по проводу к лампочке. Первый электрон, попав в провод, ударил по второму, тот — по третьему и так до тех пор, пока не дошло дело до электронов в лампочке.
И вот тут электроны столкнулись с проблемой. Оказывается, двигаться по проводу было очень легко, настолько легко, что силы в 5 вольт хватало для проталкивания по проводу двух ампер тока. Но когда электроны начали проползать по лампочке, что-то начало им мешать. Возможно, атомы внутри расположены более плотно или они немного вибрируют и электроны чаще с ними сталкиваются, что затормаживает всё движение.
Главное — лампочка оказалась не такой «гладкой трассой» для электронов, как провод.
Чтобы лучше это понять, представьте, что вам нужно толкнуть вперед 20-килограммовый ящик, который лежит на очень гладкой поверхности (на рисунке показана синим цветом):
Вашей силы хватит только для того, чтобы передвигать этот ящик каждую секунду на полметра. Ваша сила — это и есть те самые 5 вольт блока питания, а ящик — это 2 ампера электронов. Гладкая поверхность — это провод.
Но теперь представьте, что часть поверхности стала зыбкой, как песок (показано красным цветом):
Естественно, именно на этих участках движение ящика замедлится очень сильно, ведь ваших сил хватало на то, чтобы двигать 20 кг по гладкой поверхности со скоростью полметра в секунду.
Но важно то, что скорость замедлилась не конкретно на участке с песком, а вообще вдоль дороги, так как ящик одновременно лежит и на гладкой, и на песчаной поверхности. Получается, если бы вся дорога была гладкой, вы бы за секунду передвигали ящик на полметра, теперь же эти 20 кг передвигаются за секунду на 30 см.
И связано это не с тем, что вы что-то изменили. Вы ничего не меняли, вы продолжаете толкать ящик с одинаковой силой, но теперь движение замедлилось. Если бы вы заменили 20-килограмовый ящик на 50-килограмовый, то вам бы удавалось передвигать больше груза, но скорость упала бы еще сильнее.
Точно то же происходит и в примере с лампочкой. У блока питания есть определенная сила (5 вольт) и он мог бы проталкивать 2 ампера тока, если бы по всему участку не встречалось никаких преград.
Но как только мы ставим лампочку, она сразу же замедляет всё движение тока на определенное значение. Блоку питания уже не хватает сил (5 вольт), чтобы толкать максимальное количество электронов с той же скоростью (каждую секунду — 2 ампера). Теперь, из-за сопротивления вдоль движения он будет толкать не более 0.01А (10 миллиампер) в секунду.
Итак, закон Ома — это и есть та причина, по которой вы можете без малейшего опасения подключать к своему телефону или наушникам блок питания хоть на 5 вольт и 1000 ампер .
Вот как это работает. Сопротивление измеряется в Омах . Первая лампочка имела сопротивление току 500 Ом. Мы узнали это потому, что 5-вольтовый блок питания смог протолкнуть только 0.01 ампер тока. Разделив 5В на 0.01А, мы получили значение 500 Ом.
Делить вольты ( обозначаются буквой V ) на амперы ( обозначаются буквой I ), чтобы узнать сопротивление ( обозначается буквой R ) нам и подсказал тот самый закон Ома :
Теперь возьмем другую лампочку и представим, что ее сопротивление составляет 50 Ом. Получается, она в 10 раз меньше сопротивляется движению электронов. Как и первая лампочка, вторая также работает нормально только при силе тока в 10 мА (0,01А).
Но что произойдет, если мы подключим ее к нашему блоку питания на 5 вольт и 2 ампера? Так как сопротивление лампочки снизилось в 10 раз, логично предположить, что блок питания при той же силе (5 вольт) будет толкать больше электронов. Это как убрать песок с дороги, сделав ее более гладкой и скользкой, чтобы толкать груз быстрее.
Мы даже можем узнать, сколько именно тока (ампер) будет проходить через нашу новую лампочку. Для этого снова воспользуемся законом Ома: I=V/R . То есть, нужно напряжение (5 вольт) поделить на сопротивление (50 Ом) и получим 0.1А или 100 миллиампер.
Теперь тот же блок питания на 5V и 2A будет пропускать через лампочку уже не 10 миллиампер, а 100! Естественно, наша лампочка сразу же сгорит.
Блок питания остался тем же, но с новой лампочкой он выдал вместо 10 целых 100 миллиампер! Если бы мы, как разработчики лампочки, предполагали, что ее подключат к блоку питания на 5 вольт, то нам нужно было заранее побеспокоиться о том, чтобы этой силы (5 вольт) никогда не хватило для протекания 100 мА.
Нужно было просто добавить к лампочке немножко материала, который бы увеличил ее сопротивление до 500 Ом. И тогда она бы никогда не пропустила ток свыше 10 мА при использовании 5-вольтового блока питания .
Когда производитель делает схему смартфона или наушников, каждая его деталь (каждый транзистор, резистор, конденсатор и пр.) оказывает какое-то сопротивление току. То есть, можете представить всю схему, как длинный маршрут с разным типом покрытия. Это покрытие придумывает разработчик на этапе проектирования.
Если устройство рассчитано на 5 вольт, сколько бы ампер ни выдавал 5-вольтовый блок питания — это не будет иметь никакого значения, так как общее сопротивление току всех деталей будет таким, что через схему будет протекать заранее известное (безопасное) количество ампер.
Чтобы окончательно разобраться с этим вопросом, просто посмотрите вокруг себя. Нас окружает множество электроприборов: лампочки, чайники, кофемашины, тостеры. Как вы думаете, почему они не сгорают сразу, как только вы подключаете их к сети 220 вольт? Ведь обычная розетка выдает 16 ампер и ~220 вольт!
Естественно, через лампочку на 100 Ватт и, скажем, микроволновку на 1000 Ватт должно проходить совершенно разное количество электронов (разное количество ампер). Как же розетка знает, какому прибору и сколько ампер выдать под напряжением 220 вольт?
Да никак! Просто у лампочки на 100 ватт будет гораздо выше сопротивление току и она будет при напряжении 220 вольт пропускать через себя только 0.45А (100 ватт/220 вольт), а через микроволновку на 1000 Ватт будет за секунду проходить 4.5А (1000 ватт/220 вольт).
Выходит, сопротивление у лампочки — 480 Ом (220V/0.45А), а у микроволновки — 48 Ом (220V/4.5A).
Более того, если лампочка и микроволновка — это единственные работающие электрические приборы в вашем доме, тогда несмотря на розетку в 220 вольт и 16 ампер , из нее в общем будет выходить 4.95 ампер тока в секунду (4.5А микроволновки+0.45А лампочки). Сила в 220 вольт просто не способна протолкнуть больше тока, учитывая сопротивление, которое оказывают эти два прибора (лампочка на 480 Ом и микроволновка на 48 Ом).
Ровно то же касается и смартфона, фитнес-трекера или другого гаджета. У каждого из них есть свое внутреннее сопротивление, и до тех пор, пока вы будете заталкивать в них ток под давлением в 5 вольт, из блока питания будет выходить столько ампер, сколько сможет физически протолкнуть сила (или давле
Мечта квартиранта сбылась
То чувство когда устали трахаться бесплатно
Измена стандартам любимой попки

Report Page