5 свойства полимеров

5 свойства полимеров

5 свойства полимеров




Скачать файл - 5 свойства полимеров





Полимерам свойственны реакции соединения макромолекул поперечными связями, взаимодействия функциональных групп друг с другом и низкомолекулярными веществами и деструкции. Наличие у макромолекул двойных связей и функциональных групп обусловливает повышение реакционной способности полимеров. Вследствие наличия двойных связей и функциональных групп отдельные макромолекулы могут сшиваться поперечными связями. Примерами образования таких поперечных связей могут быть вулканизация и перевод линейных макромолекул термореактивных полимеров в сетчатые структуры. Полимеры могут подвергаться деструкции, т. Нередко деструкция вызывается одновременным воздействием нескольких факторов. В результате деструкции уменьшается молекулярная масса макромолекул, изменяются химические и физические свойства полимеров, в конце концов полимеры становятся непригодными для дальнейшего применения. Процесс ухудшения свойств полимеров во времени в результате деструкции макромолекул называют старением полимеров. Для замедления деструкции в состав полимеров вводят стабилизаторы, чаще всего антиоксиданты, т. Стабилизация обычно обусловлена обрывом цепи при взаимодействии антиоксидантов со свободными радикалами, образующимися в процессе реакции окисления. Механические свойства полимеров определяются элементным составом, молекулярной массой, структурой и физическим состоянием макромолекул. Для полимеров характерны некоторые особенности, такие, как высокоэластическое состояние в определенных условиях, механическое стеклование, способность термореактивных макромолекул образовывать жесткие сетчатые структуры. Механическая прочность полимеров возрастает с увеличением их молекулярной массы, при переходе от линейных к разветвленным и далее сетчатым структурам. Стереорегулярные структуры имеют более высокую прочность, чем полимеры с разупорядоченной структурой. Дальнейшее увеличение механической прочности полимеров наблюдается при их переходе в кристаллическое состояние. Например, разрывная прочность кристаллического полиэтилена на 1,,0 порядка выше, чем прочность аморфного полиэтилена. Удельная прочность на единицу площади сечения кристаллических полимеров соизмерима, а на единицу массы на порядок превышает прочность легированных сталей. Механическая прочность полимеров может быть также повышена путем добавления наполнителей, например сажи и мела, армированием волокнами, например стекловолокном. Все вещества подразделяются на диэлектрики, полупроводники и проводники. Диэлектрики имеют очень низкую проводимость которая увеличивается с повышением температуры. Под действием внешнего электрического поля происходит поляризация диэлектриков, т. Вследствие поляризации внутри диэлектрика возникает собственное электрическое поле, которое ослабляет воздействие внешнего поля. Количественной характеристикой ослабления воздействия внешнего поля служит диэлектрическая проницаемость, показывающая, во сколько раз сила взаимодействия двух зарядов в диэлектрике меньше, чем в вакууме. Вследствие поляризации в диэлектрике возникают диэлектрические потери, т. При некотором высоком напряжении внешнего электрического поля диэлектрик теряет свои электроизоляционные свойства Это напряжение получило название напряжения пробоя, а отношение напряжения пробоя к толщине диэлектрика — электрической прочности. Большинство полимеров относится к диэлектрикам. Однако их диэлектрические свойства лежат в широких пределах и зависят от состава и структуры макромолекул. Диэлектрические свойства в значительной степени определяются наличием, характером и концентрацией полярных групп в макромолекулах. Наличие у макромолекул галогенных, гидроксидных, карбоксидных и других полярных групп ухудшает диэлектрические свойства полимеров. Например, диэлектрическая проницаемость поливинилхлорида в 1,5 раза ниже, удельная электрическая проводимость и электрическая прочность на порядок ниже, а диэлектрические потери на два порядка выше, чем аналогичные показатели у полиэтилена. Поэтому хорошими диэлектриками являются полимеры, не имеющие полярных групп, такие, как фторопласт, полиэтилен, полиизобутилен, полистирол. С увеличением молекулярной массы полимера улучшаются его диэлектрические свойства. Электрическая проводимость диэлектриков обусловлена движением ионов, образующихся при деструкции полимеров, а также диссоциацией примесей, включая низкомолекулярные продукты поликонденсации, растворители, эмульгаторы, инициаторы и катализаторы полимеризации. Поэтому для улучшения диэлектрических свойств необходимо удалять примеси из полимеров. Некоторые функциональные группы, например гидроксидные, обусловливают гидрофильность полимеров. Такие полимеры поглощают воду. Наличие воды приводит к повышению электрической проводимости полимеров, поэтому гидроксидные группы стремятся связать между собой или с другими группами реакция конденсации. Полимерные диэлектрики широко применяются в электротехнике и радиотехнике как материалы различных электротехнических изделий, защитных покрытий кабелей, проводов, изоляционных эмалей и лаков. К полупроводникам относят вещества, электрическая проводимость которых лежит в пределах Электрическая проводимость полупроводников возрастает с увеличением температуры и при воздействии света. Некоторые полимеры обладают полупроводниковыми свойствами. Обычно это полимеры с системой сопряженных двойных связей. Полупроводниковые свойства таких полимеров обусловлены наличием делокализованных -электронов сопряженных двойных связей. В электрическом поле определенного напряжения эти электроны могут перемещаться вдоль цепи, обеспечивая перенос заряда. Примерами органических полупроводников могут служить полиацетилен поливинилены , полинитрилы продукты термической обработки полиакрилонитрила В последние годы было открыто явление резкого возрастания электрической проводимости полиацетилена и некоторых других органических полупроводников при введении в эти полимеры катионов, например ионов или анионов, например ионов Добавки вводят электролизом неводных растворов сответствующих электролитов, например и другими методами. При некоторой концентрации добавок электрическая проводимость возрастает скачкообразно, например у полиацетилена от до Легированные органические полупроводники могут применяться в качестве электродных материалов аккумуляторов, пластин конденсаторов, а в перспективе и для замены металлов органические металлы. ЗНАЧЕНИЕ ХИМИИ В ИЗУЧЕНИИ ПРИРОДЫ И РАЗВИТИИ ТЕХНИКИ 1. СТРОЕНИЕ ВЕЩЕСТВА Глава I. ЗАЩИТА МЕТАЛЛОВ ОТ КОРРОЗИИ 4. ХИМИЯ ВОДЫ И ТОПЛИВА. ОХРАНА ВОДНОГО БАССЕЙНА Глава XV. СВОЙСТВА ПОЛИМЕРОВ Химические свойства полимеров зависят от их состава, молекулярной массы и структуры. При некотором высоком напряжении внешнего электрического поля диэлектрик теряет свои электроизоляционные свойства. Это напряжение получило название напряжения пробоя, а отношение напряжения пробоя к толщине диэлектрика — электрической прочности. Примерами органических полупроводников могут служить.

Физические свойства полимеров

Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются \[1\]. К линейным полимерам относится, например, целлюлоза , к разветвлённым, например, амилопектин , есть полимеры со сложными пространственными трёхмерными структурами. Полимеры состоят из большого числа повторяющихся группировок звеньев одинакового строения, например поливинилхлорид —СН 2 —CHCl— n , каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами. Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают гибкостью. По химическому составу все полимеры подразделяются на органические , элементоорганические , неорганические. Следует отметить, что в технике полимеры часто используются как компоненты композиционных материалов , например, стеклопластиков. Полимеры подразделяют по полярности влияющей на растворимость в различных жидкостях. В неполярных звеньях дипольные моменты связей атомов взаимно компенсируются. Полимеры, звенья которых обладают значительной полярностью, называют гидрофильными или полярными. Полимеры, содержащие как полярные, так и неполярные звенья, называются амфифильными. Гомополимеры, каждое звено которых содержит как полярные, так и неполярные крупные группы, предложено называть амфифильными гомополимерами. По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные. Термопластичные полимеры полиэтилен , полипропилен , полистирол при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки например, вулканизация цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения. Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды , белки и нуклеиновые кислоты , из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле. Человек давно использует природные полимерные материалы в своей жизни. Однако промышленное производство цепных полимеров началось в начале XX века, хотя предпосылки для этого появились ранее. В первом случае крупнотоннажное производство базируется на целлюлозе. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят плёнки , волокна , лакокрасочные материалы и загустители. Необходимо отметить, что развитие кино и фотографии оказалось возможным лишь благодаря появлению прозрачной плёнки из нитроцеллюлозы. Производство последнего было освоено накануне Второй мировой войны в Советском Союзе, Англии, Германии и США. После войны возобновилось производство полиамидного волокна и тканей капрон , нейлон , начатое ещё до войны. В х годах XX века было разработано полиэфирное волокно и освоено производство тканей на его основе под названием лавсан или полиэтилентерефталат. В первом случае эти волокна очень часто сочетаются с натуральными волокнами из целлюлозы или из белка хлопок , шерсть , шёлк. Эпохальным событием в мире полимеров явилось открытие в середине х годов XX столетия и быстрое промышленное освоение катализаторов Циглера-Натта , что привело к появлению полимерных материалов на основе полиолефинов и, прежде всего, полипропилена и полиэтилена низкого давления до этого было освоено производство полиэтилена при давлении порядка атм. Список замыкают так называемые уникальные полимеры, синтезированные в 60—70 годы XX века. К ним относятся ароматические полиамиды , полиимиды , полиэфиры , полиэфир-кетоны и др. Для них характерно сочетание выдающихся значений прочности и термостойкости. Многие полимеры, такие как полиуретаны, полиэфирные и эпоксидные смолы, склонны к воспламенению, что зачастую недопустимо при практическом применении. Для предотвращения этого применяются различные добавки или используются галогенированные полимеры. Галогенированные ненасыщенные полимеры синтезируют путём включения в конденсацию хлорированных или бромированных мономеров, например, гексахлорэндометилентетрагидрофталевой кислоты ГХЭМТФК , дибромнеопентилгликоля или тетрабромфталевой кислоты. Главным недостатком таких полимеров является то, что при горении они способны выделять газы, вызывающие коррозию, что может губительно сказаться на располагающейся рядом электронике. Действие гидроксида алюминия основано на том, что под высокотемпературным воздействием выделяется вода, препятствующая горению. Для достижения эффекта требуется добавлять большие количества гидроксида алюминия: Пирофосфат аммония действует по другому принципу: Благодаря ценным свойствам, полимеры применяются в машиностроении , текстильной промышленности , сельском хозяйстве , медицине , автомобиле - и судостроении , авиастроении и в быту текстильные и кожевенные изделия, посуда, клей и лаки , украшения и другие предметы. На основании высокомолекулярных соединений изготовляют резины , волокна , пластмассы , пленки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения. Наука о полимерах стала развиваться как самостоятельная область знания к началу Второй мировой войны и сформировалась как единое целое в х годах XX столетия, когда была осознана роль полимеров в развитии технического прогресса и жизнедеятельности биологических объектов. Она тесно связана с физикой , физической , коллоидной и органической химией и может рассматриваться как одна из базовых основ современной молекулярной биологии , объектами изучения которой являются биополимеры. Материал из Википедии — свободной энциклопедии. Статьи со ссылками на Викисловарь. Навигация Персональные инструменты Вы не представились системе Обсуждение Вклад Создать учётную запись Войти. Пространства имён Статья Обсуждение. Просмотры Читать Править Править вики-текст История. В других проектах Викисклад. Эта страница последний раз была отредактирована 3 июля в Текст доступен по лицензии Creative Commons Attribution-ShareAlike ; в отдельных случаях могут действовать дополнительные условия. Свяжитесь с нами Политика конфиденциальности Описание Википедии Отказ от ответственности Разработчики Соглашение о cookie Мобильная версия.

Свойства полимеров

Переводы контакт волгоград адреса

Обесцвечивают раствор перманганата калия и бромную воду

информационный портал о черной и цветной металлургии

Город армавир как живут крымские цыгане

Расценки на электромонтажные работы

Механические свойства полимеров

Закон об отмене номера двигателя

Спасибо ангелу стихи

Report Page