306 0 17

306 0 17




🔞 ALLE INFORMATIONEN KLICKEN HIER👈🏻👈🏻👈🏻

































306 0 17
From Wikipedia, the free encyclopedia
"30.06" redirects here. For the "30.06 sign" in Texas gun law, see Gun laws in Texas § 30.06 signage .
.30-06 Springfield cartridge with soft tip
This section needs additional citations for verification . Please help improve this article by adding citations to reliable sources . Unsourced material may be challenged and removed. ( January 2021 ) ( Learn how and when to remove this template message )


^ Chart of SAAMI pressure levels for common cartridges, in PSI or CUP

^ "Federal Cartridge Co. ballistics page" . Archived from the original on 22 September 2007 . Retrieved 2007-09-21 .

^ "Accurate Powder reload data table" (PDF) . Archived from the original (PDF) on 20 March 2009 . Retrieved 2009-02-09 .

^ Gun Digest Shooter's Guide to Rifles Wayne van Zwoll, p 186

^ Sharpe, Philip B. (1938). The Rifle in America . William Morrow. p. 591. The rimless cartridge case first used a standard 220-grain Krag bullet, but in 1906 the government decided that high velocity was necessary and accordingly adopted the German form of pointed or spitzer bullet, reducing the weight to 150 grains closely approximating the 154-grain 8 mm Mauser.

^ "Cartridge Specifications and Chronology" . Retrieved 26 October 2014 .

^ "The .30-06 Springfield Cartridge" . The M1 Garand Rifle . Retrieved 26 October 2014 .

^ Hatcher, Julian S. (1962). Hatcher's Notebook (3rd ed.). Harrisburg, PA: Stackpole Company. p. 19. LCCN 62-12654 . The maximum range was given in the handbooks as 4700 yards.

^ Hatcher 1962 , p. 20

^ George, John (1981). Shots Fired in Anger . NRA Press. pp. 402–403.

^ Hatcher 1962 , pp. 21–23

^ Hatcher 1962 , pp. 19–20

^ "FN Mauser Model 98 rifle and carbine operator's manual" (PDF) .

^ "M118 History - Sniper Central" . Retrieved 26 October 2014 .

^ Firestone, Adam C. "Firearm Technical Trivia, July 1999" . www.cruffler.com .

^ Jump up to: a b Hatcher 1962 , p. 29

^ Jump up to: a b c FM 23-10 Basic Field Manual: U.S. Rifle Caliber .30, M1903 , 20 September 1943 page 212 Archived April 18, 2013, at the Wayback Machine

^ "Technical Manual Small-Arms Ammunition, TM9-1990, U.S. War Department" . 23 May 1942 . Retrieved 20 February 2020 .

^ Mann Accuracy Device

^ "Technical Manual Small-Arms Ammunition, TM9-1990, U.S. War Department" . 23 May 1942 . Retrieved 20 February 2020 .

^ Paul Wahl and Don Toppel, The Gatling Gun , Arco Publishing, 1971, p. 155.

^ Jump up to: a b Dunlap, Roy, Ordnance Went Up Front , Samworth Press (1948), p. 303 ISBN 978-1-884849-09-1

^ U.S. Army (April 1994), Army Ammunition Data Sheets: Small Caliber Ammunition (PDF) , Technical Manual, TM 43-0001-27, archived from the original (PDF) on December 2, 2007 , page 5-9

^ George 1981 , p. 409

^ George 1981 , pp. 81, 428, 434–435

^ Cooke, Gary W. ".30 Caliber (.30-06 Springfield) Ammunition" . inetres.com .

^ Armor Plate Shootout - 0.5" thick MIL-A-12560 armor plate . 31 January 2013 – via YouTube.

^ "Federal Premium Ammunition - Rifle" . www.federalpremium.com . Retrieved 2017-12-18 .

^ Hodgdon Powder Company, Cartridge Load Recipe Report, 3/27/2010, data.hodgdon.com

^ Speer Reloading Manual Number 12, 1994, Blount, Inc., Lewiston, ID. pp. 286-294.

^ Hornady Handbook of Cartridge Reloading, Fourth Edition, 1991, Hornady Manufacturing Company, Grand Island, NE. pp. 343-350.

^ Nosler Reloading Guide Number Four, 1996, Nosler, Inc., Bend OR. pp. 322-329.

^ Barnes Reloading Manual Number 2-Rifle Data, 1997, Barnes Bullets, Inc., American Fork, UT. pp. 381-386.

^ Barnes, Frank C., Cartridges of the World (Kindle Edition) , 2009, Frank C. Barnes and Krause Publications, Chapter 2, Location 375

^ Kim Lockhart. "30-06 Springfield" . Archived from the original on 2013-04-24 . Retrieved 26 October 2014 .

^ "Rifle Recoil Table" . Retrieved 26 October 2014 .

^ "C.I.P. TDCC datasheet .30-06 Spring" (PDF) .

^ "Ballistic Resistance of Body Armor NIJ Standard-0101.06" (PDF) . NIJ Standards . United States Department of Justice . July 2008 . Retrieved 2008-11-13 .

^ "Instructional Guidance on the Operation and Maintenance of M1 Garand Rifle Firing the M1909 Blank Cartridge" (PDF) . Archived from the original (PDF) on 2012-11-07 . Retrieved 2019-02-08 . .

^ Punnett, Chris. "An Introduction to Collecting .30-06 Cartridges" . International Ammunition Association, Inc . Retrieved 3 March 2018 .

^ US T24 Machine gun (MG42) forgottenweapons.com; Retrieved 1 July 2014

^ See, e.g. http://cartridgecollectors.org/?page=introduction-to-30-06-cartridges

^ "Gary's U.S. Infantry Weapons Reference Guide - .30 Caliber (.30-06 Springfield) Ammunition" . Archived from the original on 27 September 2007 . Retrieved 2007-09-21 .

^ "An Introduction to Collecting .30-06" . Archived from the original on 19 September 2007 . Retrieved 2007-09-21 .



C.I.P. CD-ROM edition 2003
C.I.P. decisions, texts and tables ( free current C.I.P. CD-ROM version download ) (ZIP and RAR format)

U.S. infantry weapons of World War II and Korea
Chinese infantry weapons of the Second Sino-Japanese War
The .30-06 Springfield cartridge (pronounced "thirty- ought -six"), 7.62×63mm in metric notation, and called the .30 Gov't '06 by Winchester, [4] was introduced to the United States Army in 1906 and later standardized ; it remained in use until the late 1970s. The ".30" refers to the caliber of the bullet in inches. The "06" refers to the year the cartridge was adopted, 1906. It replaced the .30-03 , 6mm Lee Navy , and .30-40 Krag cartridges. The .30-06 remained the U.S. Army's primary rifle and machine gun cartridge for nearly 50 years before being replaced by the 7.62×51mm NATO and 5.56×45mm NATO , both of which remain in current U.S. and NATO service. It remains a very popular sporting round, with ammunition produced by all major manufacturers.

In the early-1890s, the U.S. military adopted the smokeless powder .30-40 Krag rimmed cartridge. The 1894 version of that cartridge used a 220-grain (14 g) round-nose bullet. Around 1901, the U.S. started developing an experimental rimless cartridge for a Mauser action with box magazine. That led to the 1903 .30-03 rimless service round that used the same 220-grain (14 g) round-nose bullet as the Krag. [5] The .30-03 achieved a muzzle velocity of 2,300 ft/s (700 m/s). [ citation needed ]

Many European militaries at the beginning of the 20th century were adopting lighter-weight (roughly 150-to-200-grain (9.7 to 13.0 g)), higher velocity, service rounds with pointed (spitzer) bullets : France in 1898 ( 8mm Lebel Balle D spitzer 198 grains (12.8 g) with boat-tail ), Germany in 1903 ( 7.92×57mm Mauser 153 grains (9.9 g) S Patrone ), Russia in 1908 ( 7.62×54mmR Lyokhkaya pulya [light bullet]), and Britain in 1910 ( .303 British Mark VII 174 grains (11.3 g)). [6] Consequently, the round-nosed U.S. .30-03 service cartridge was falling behind. [7]

For these reasons, the U.S. military developed a new, lighter cartridge in 1906, the .30-06 Springfield, "cartridge, ball, caliber .30, Model of 1906", or just M1906 . The .30-03 case was modified to have a slightly shorter neck to fire a spitzer flat-based 150-grain (9.72 g) bullet that had a ballistic coefficient (G1 BC) of approximately 0.405, a muzzle velocity of 2,700 ft/s (820 m/s), and a muzzle energy of 2,429 ft⋅lbf (3,293 J). The cartridge was loaded with military rifle (MR) 21 propellant, and its maximum range was claimed (falsely) to be 4,700 yd (4,300 m). [8] The M1903 Springfield rifle , which had been introduced alongside the .30-03 cartridge, was modified to accept the new .30-06 Springfield cartridge. Modifications to the rifle included shortening the barrel at its breech and resizing the chamber, so that the more tapered bullet would not have to jump too far to reach the rifling. Other changes to the rifle included elimination of the troublesome "rod bayonet" of the earlier Springfield rifles. [ citation needed ]

The M1906 maximum range was originally overstated. When the M1906 cartridge was developed, the range tests had been done to only 1,800 yards (1,650 m); distances beyond that were estimated, but the estimate for extreme range was incorrect by almost 40 percent. [9] The range discrepancy became evident during World War I . Before the widespread employment of light mortars and artillery, long-range machine gun "barrage" or indirect fires were considered important in U.S. infantry tactics. [10] When the U.S. entered World War I, it did not have many machine guns, so it acquired British and French machine guns. When those weapons were later replaced with U.S. machine guns firing the M1906 round, the effective range of the barrage was 50 percent less. [11] Firing tests performed around 1918 at Borden Brook Reservoir (Massachusetts), Miami, and Daytona Beach showed the actual maximum range of the M1906 cartridge to be 3,300 to 3,400 yards (3,020 to 3,110 m). [12] Germany, which was using the S Patrone (S ball cartridge) loaded with a similar 153-grain (9.9 g) flat-based bullet in its rifles, had apparently confronted and solved the same problem by developing an aerodynamically more refined bullet for long range machine gun use. The s.S. Patrone was introduced in 1914 and used a 197.5-grain (12.80 g) s.S. – schweres Spitzgeschoß (heavy spitzer) boat-tail bullet which had a maximum range of approximately 4,700 m (5,140 yd). [13]

For these reasons, in 1926, the ordnance corps, after extensive testing of 7.5×55mm Swiss GP11 projectiles provided by the Swiss, developed the .30 M1 ball cartridge loaded with a new improved military rifle (IMR) 1185 propellant and 174-grain (11.28 g) bullet with a 9° boat-tail and an ogive of 7 calibers nose cone that had a higher ballistic coefficient of roughly 0.494 (G1 BC), [14] [15] that achieved a muzzle velocity of 2,647 ft/s (807 m/s) and muzzle energy of 2,675 ft⋅lbf (3,627 J). [16] This bullet further reduced air resistance in flight, resulting in less rapid downrange deceleration, less lateral drift caused by crosswinds, and significantly greater supersonic and maximum effective range from machine guns and rifles alike. [17] Additionally, a gilding metal jacket was developed that all but eliminated the metal fouling that plagued the earlier M1906 cartridge.
The loaded round weighed 420 grains (27 g) and its maximum range was approximately 5,500 yd (5,030 m). [17] The maximum average pressure (MAP) was 48,000 psi (330.95 MPa). The average target radius was specified to be not greater than 4.5 in (11 cm) at 500 yd (457 m) and not greater than 5.5 in (14 cm) at 600 yd (549 m) when fired from a Mann accuracy weapon. [18] [19]

Wartime surplus totaled over two billion rounds of ammunition. Army regulations called for training use of the oldest ammunition first. As a result, the older .30-06 ammunition was expended for training; stocks of .30 M1 ball ammunition were allowed to slowly grow until all of the older M1906 ammunition had been fired. By 1936, it was discovered that the maximum range of the .30 M1 ball ammunition with its boat-tailed spitzer bullets was beyond the safety limitations of many military firing ranges. An emergency order was made to manufacture quantities of ammunition that matched the external ballistics of the earlier M1906 cartridge as soon as possible. A new cartridge was developed in 1938 that was essentially a duplicate of the old M1906 round, but loaded with IMR 4895 propellant and a new flat-based bullet that had a gilding metal jacket and a different lead alloy, and weighed 152 grains (9.85 g) instead of 150 grains (9.72 g). This 1938 pattern cartridge, the cartridge, caliber .30, ball, M2, achieved a muzzle velocity of 2,805 ft/s (855 m/s) and muzzle energy of 2,656 ft⋅lbf (3,601 J). [16] The loaded round weighed 416 grains (27.0 g) and its maximum range was approximately 3,450 yd (3,150 m). [17] The MAP was 50,000 psi (344.74 MPa). The average target radius was specified to be not greater than 6.5 in (16.5 cm) at 500 yd (457 m) and not greater than 7.5 in (19.1 cm) at 600 yd (549 m). [20]

In military service, the .30-06 was used in the bolt-action M1903 Springfield rifle, the bolt-action M1917 Enfield rifle, the semi-automatic M1 Garand rifle, the semi-automatic M1941 Johnson rifle , the Famage Mauser, the Browning Automatic Rifle (BAR), and numerous machine guns, including the M1917 and M1919 series. It served the United States in both World Wars and in the Korean war , its last major use was during the Vietnam war . [ citation needed ]

The Belgian army (ABL) bought the FN Model 1949 rifle in .30-06 calibre (both as a sniper version with telescopic sights and as a general service weapon). The Belgium armed forces used the round widely in the Korean war, where the .30-06 calibre FN-49 proved to be a superior weapon in terms of both accuracy and reliability to the American M1 Garand . The .30-06 FN-49 saw widespread use in the various wars in and around the Belgian Congo . The 30-06 FN-49 was also sold to the armies of Luxembourg, Indonesia and Colombia. Another customer was Brazil where it served the navy. [ citation needed ]

Large volumes of surplus brass made it the basis for dozens of commercial and wildcat cartridges, as well as being extensively used for reloading . In 1908 the Model 1895 Winchester lever-action rifle became the first commercially-produced sporting rifle chambered in .30-06 Springfield. It is still a very common round for hunting and is suitable for large game such as bison, Sambar deer , and bear, when used at close to medium ranges. [ citation needed ]

In 1903, the Army converted its M1900 Gatling guns in .30 Army to fit the new .30-03 cartridge as the M1903. The later M1903-'06 was an M1903 converted to .30-06. This conversion was principally carried out at the Army's Springfield Armory arsenal repair shops. All models of Gatling guns were declared obsolete by the U.S. Army in 1911, after 45 years of service. [21]

With "hot" handloads and a rifle capable of handling them, the .30-06 is capable of performance rivaling many magnum cartridges. However, when loaded more closely to the original government specs, .30-06 remains within the upper limit of felt recoil most shooters consider tolerable over multiple rounds, unlike the magnums, and is not unnecessarily destructive of meat on game such as deer. With appropriate loads, it is suitable for any small or large heavy game found in North America . The .30-06's power and versatility (combined with the availability of surplus firearms chambered for it and demand for commercial ammunition ) have kept the round as one of the most popular for hunting in North America. [ citation needed ]

The .30-06 cartridge was designed when shots of 1,000 yards (914.4 m) were expected. In 1906, the original M1906 .30-06 cartridge consisted of a 150 grains (9.7 g), flat-base cupronickel -jacketed-bullet. After World War I, the U.S. military needed better long-range performance machine guns. Based on weapons performance reports from Europe, a streamlined, 173 grains (11.2 g) boattail, gilding-metal bullet was used. The .30-06 cartridge, with the 173 grains (11.2 g) bullet was called cartridge, .30, M1 ball . The .30-06 cartridge was far more powerful than the smaller Japanese 6.5×50mm Arisaka cartridge and comparable to the Japanese 7.7×58mm Arisaka . The new M1 ammunition proved to be significantly more accurate than the M1906 round. [22]

In 1938, the unstained, 150 grains (9.7 g), flat-base bullet combined with the .30-06 case became the M2 ball cartridge. The M2 ball specifications required 2,740 feet per second (835.2 m/s) minimum velocity, measured 78 feet (24 m) from the muzzle. [23] M2 ball was the standard-issue ammunition for military rifles and machine guns until it was replaced by the 7.62×51mm NATO round in 1954. For rifle use, M2 ball ammunition proved to be less accurate than the earlier M1 cartridge; even with match rifles, a target group of 5 inches (130 mm) diameter at 200 yards (180 m) using the 150-grain (9.7 g) M2 bullet was considered optimal, and many rifles did not perform nearly as well. [22] The U.S. Marine Corps retained stocks of M1 ammunition for use by snipers and trained marksmen throughout the Solomon Islands campaign in the early years of the war. [24]

In an effort to increase accuracy some snipers resorted to use of the heavier .30-06 M2 armor-piercing round, a practice that re-emerged during the Korean War . Others sought out lots of M2 ammunition produced by Denver Ordnance , which had proved to be more accurate than those produced by other wartime ammunition plants when used for sniping at long range. [25] With regards to penetration, the M2 AP round [26] can penetrate at least 0.42 in (10.67 mm) of armor steel at 100 yards (91 m). A test done by Brass Fetchers shows that M2 AP can actually penetrate up to 0.5 in (12.70 mm) of MIL-A-12560 armor steel from a distance of 100 yards (91 m). The round struck the plate at a velocity of 2601 fps, and made a complete penetration. [27]

Commercially manufactured rifles chambered in .30-06 are popular for hunting. Current .30-06 factory ammunition varies in bullet weight from 7.1 to 14.3 grams (109.6 to 220.7 gr) in solid bullets, and as low as 3.6 grams (55.6 gr) with the use of a sub-caliber bullet in a sabot . Loads are available with reduced velocity and pressure as well as increased velocity and pressure for stronger firearms. The .30-06 remains one of the most popular sporting cartridges in the world. Many hunting loads have over 3,000 foot-pounds (4,100 J) of energy at the muzzle and use expanding bullets that can deliver rapid energy transfer to targets. [ citation needed ]

The table above shows typical muzzle velocities available in commercial 30-06 loads along with maximum .30-06 muzzle velocities reported by several reloading manuals for common bullet weights. Hodgdon, Nosler, and Barnes report velocities for 24 inches (610 mm) barrels. Hornady and Speer report velocities for 22 inches (560 mm) barrels. The data are all for barrels with a twist rate of 1 turn in 10 inches (250 mm) which is needed to stabilize the heaviest bullets. The higher muzzle velocities reported by Nosler for 165 grains (10.7 g) and heavier bullets use loads employing a slow-burning, double-base powder (Alliant Reloder 22). [ citation needed ]

The newer 7.62×51mm NATO/.308 Winchester cartridge offers similar performance to standard military .30-06 loadings in a smaller cartridge.

One reason that the .30-06 has remained a popular round for so long is that the cartridge is at the upper limit of power that is tolerable to most shooters. [34] [35] Recoil energy ( free recoil ) greater than 20 foot-pounds force (27 J) will cause most shooters to develop a serious flinch, and the recoil energy of an 8-pound (3.6 kg) rifle firing a 165-grain (10.7 g) 30-06 bullet at 2,900 feet per second (880 m/s) is 20.1 foot-pounds force (27.3 J). Recoil-shy shooters can opt for lighter bullets, such as a 150-grain (9.7 g) bullet. In the same 8-pound (3.6 kg) rifle, a 150-grain (9.7 g) bullet at 2,910 feet per second (890 m/s) will only generate 17.6 foot-pounds force (23.9 J) of recoil energy. [36] Young shooters can start out with even lighter bullets weighing 110, 125 or 130 grains (7.1, 8.1 or 8.4 g). [ citation needed ]

The .30-06 Springf
Weger der Periode lässt sie sich beim Userdate Anal ficken
Zu Hause kann man immer noch am besten ficken
Geilsten Flotter Dreier Mit Zwei Wunderschönen Babes

Report Page