Untitled

Untitled

ru.m.wikipedia.org

Наблюдаемые характеристики

Править

К красным гигантам относят звёзды спектральных классов K и M класса светимости III, то есть с абсолютной звёздной величиной 0 m ≥ M V ≥ − 3 m {\displaystyle 0^{m}\geq M_{V}\geq -3^{m}}

 . Температура излучающей поверхности (фотосферы) красных гигантов сравнительно невелика (Tph ≈ 3000—5000 K) и, соответственно, поток энергии с единицы излучающей площади невелик — в 2—10 раз меньше, чем у Солнца. Однако полная светимость таких звёзд может достигать 105—106 L, так как красные гиганты и сверхгиганты имеют очень большие размеры и, соответственно, площади поверхности. Характерный радиус красных гигантов  — от 100 до 800 солнечных радиусов, что соответствует площади поверхности в 104—106 раз больше солнечной. Так как температура фотосферы красного гиганта близка к температуре спирали лампы накаливания (≈3000 К), красные гиганты, вопреки своему названию, аналогично лампам, испускают свет не красного, а скорее охристо-желтоватого оттенка.

Спектры красных гигантов характеризуются наличием молекулярных полос поглощения, поскольку в их относительно холодной фотосфере некоторые молекулы оказываются устойчивыми. Максимум излучения приходится на красную и инфракрасную области спектра.

Происхождение и строение

Править

Ядерные источники энергии и их связь со строением красных гигантов

Править

В процессе эволюции звёзд главной последовательности происходит «выгорание» водорода — нуклеосинтез с образованием гелия в pp-цикле и (для массивных звёзд) в CNO-цикле. Такое выгорание приводит к накоплению в центральных частях звезды гелия, который при сравнительно низких температурах и давлениях ещё не может вступать в термоядерные реакции. Прекращение энерговыделения в ядре звезды ведёт к сжатию и, соответственно, к повышению температуры и плотности ядра. Рост температуры и плотности в звёздном ядре приводит к условиям, в которых активируется новый источник термоядерной энергии: выгорание гелия (тройная гелиевая реакция или тройной альфа-процесс), характерный для красных гигантов и сверхгигантов.

При температурах порядка 108 К кинетическая энергия ядер гелия становится достаточно высокой для преодоления кулоновского барьера между ядрами: два ядра гелия (альфа-частицы) могут сливаться с образованием крайне нестабильного изотопа бериллия 8Be:

4He + 4He = 8Be.

Бо́льшая часть 8Be, имеющего период полураспада всего 6,7×10−17 секунды, снова распадается на две альфа-частицы, но при столкновении 8Be с высокоэнергетической альфа-частицей может образоваться стабильное ядро углерода 12C:

8Be + 4He = 12C + 7,3

МэВ.

Несмотря на весьма низкую равновесную концентрацию Be8 (например, при температуре ~108 К отношение концентраций 8Be/4He ~ 10−10), скорость тройной гелиевой реакции оказывается достаточной для достижения нового гидростатического равновесия в горячем ядре звезды. Зависимость энерговыделения от температуры в тройной гелиевой реакции чрезвычайно высока: так, для диапазона температур T ≈ 1—2·108 К энерговыделение

ε 3 α = 10 8 ρ 2 Y 3 ⋅ ( T 10 8 K ) 30 , {\displaystyle \varepsilon _{3\alpha }=10^{8}\rho ^{2}Y^{3}\cdot \left({T \over {10^{8}\mathrm {K} }}\right)^{30},}

где Y — парциальная концентрация гелия в ядре (в рассматриваемом случае, когда водород почти «выгорел», она близка к единице).

Начало тройной гелиевой реакции в вырожденных ядрах маломассивных (масса до ~2,25 M) красных гигантов имеет взрывоподобный характер, что приводит к резкому, но очень кратковременному (~104—105 лет) росту их светимости — гелиевой вспышке.

Следует, однако, отметить, что тройная гелиевая реакция характеризуется значительно меньшим энерговыделением, чем CNO-цикл: в пересчёте на единицу массы энерговыделение при «горении» гелия более чем в 10 раз ниже, чем при «горении» водорода. По мере выгорания гелия и исчерпания источника энергии в ядре возможны и более сложные реакции нуклеосинтеза, однако, во-первых, для таких реакций требуются всё более высокие температуры и, во-вторых, энерговыделение на единицу массы в таких реакциях падает по мере роста массовых чисел ядер, вступающих в реакцию.

Дополнительным фактором, по-видимому, влияющим на эволюцию ядер красных гигантов, является сочетание высокой температурной чувствительности тройной гелиевой реакции (и реакций синтеза более тяжёлых ядер) с механизмом нейтринного охлаждения: при высоких температурах и давлениях возможно рассеяние фотонов на электронах с образованием нейтрино-антинейтринных пар, которые свободно уносят энергию из ядра: звезда для них прозрачна. Скорость такого объёмного нейтринного охлаждения, в отличие от классического поверхностного фотонного охлаждения, не лимитирована процессами передачи энергии из недр звезды к её фотосфере. В результате реакции нуклеосинтеза в ядре звезды достигается новое равновесие, характеризующееся одинаковой температурой ядра: образуется изотермическое ядро.

Завершающие стадии эволюции красных гигантов

Править

Солнце как красный гигант

Править

Жизненный цикл Солнца

В настоящее время Солнце является звездой среднего возраста, и возраст Солнца оценивается приблизительно в 4,57 миллиарда лет. Солнце будет оставаться на главной последовательности ещё приблизительно 5 миллиардов лет, постепенно увеличивая свою яркость на 10 % каждый миллиард лет, после чего водород в ядре будет исчерпан.

После этого температура и плотность в солнечном ядре повысятся настолько, что начнётся горение гелия, и гелий начнёт превращаться в углерод. Размеры Солнца вырастут как минимум в 200 раз, то есть почти до современной земной орбиты (0,93 а.е.)[3][4][5] Меркурий и Венера, несмотря на сильную потерю массы Солнца к моменту перехода на стадию красного гиганта, будут им поглощены и полностью испарятся. Земля, если не разделит их судьбу, будет разогрета настолько, что шансов на сохранение жизни не будет никаких[6][7]. Океаны же испарятся задолго до перехода Солнца на стадию красного гиганта, приблизительно через 1,1 миллиарда лет[8].

На стадии красного гиганта Солнце будет находиться приблизительно 100 миллионов лет, после чего превратится в планетарную туманность с белым карликом в центре; планетарная туманность рассеется в межзвёздной среде в течение нескольких тысячелетий, а белый карлик будет остывать в течение многих миллиардов лет.

Красные гиганты — переменные звёзды

Править

См. также

Править

Литература

Править

Примечания

Править

Source ru.m.wikipedia.org

Report Page