(Не)совершенная случайность

(Не)совершенная случайность

Леонард Млодинов

Вскоре талант Бернулли был замечен научным сообществом, и когда в конце 1686 г. Мегерлин умер, его место профессора математики занял Бернулли. К тому времени Бернулли трудился над задачами, связанными с азартными играми. Наибольшее влияние на него оказал голландский ученый и в частности математик Христиан Гюйгенс, который не только усовершенствовал телескоп и первым разглядел кольца Сатурна, создал первые маятниковые часы (основываясь на идеях Галилея), способствовал развитию волновой теории света, но и, вдохновленный мыслями Паскаля и Ферма, написал учебник по вероятности.

Для Бернулли учебник Гюйгенса стал откровением. Что однако не помешало Бернулли увидеть ограниченность теории Гюйгенса. Она могла удовлетворять потребностям игроков в азартные игры, но оставалась бесполезной в других, более насущных сферах жизни. Как можно точно определить вероятность достоверности свидетельских показаний? Или вероятность того, кто — Карл I, король Англии, Шотландии и Ирландии, или Мария I, королева Шотландии — лучше всего играл в гольф? (Оба любили этот вид спорта.) Бернулли считал: чтобы стало возможным рациональное принятие решения, должен быть надежный, подкрепленный математически способ определения вероятностей. Его взгляд отражал культуру тех времен: ведение дел способом, согласующимся с вероятностными ожиданиями, считалось признаком человека здравомыслящего. Но, как считал Бернулли, не одна только субъективность ограничивала ту теорию случайности. По его мнению, теория не действовала в ситуациях незнания, где вероятности различных исходов могли быть определены в принципе, но не на практике. Именно это я и обсуждал с Моше, именно с этим и столкнулся Джаггер: каковы шансы того, что неидеальная кость выдаст 6? Каковы ваши шансы заразиться чумой? Какова вероятность того, что ваш нагрудный щит выдержит удар шпагой противника? Бернулли считал: и в субъективной, и в неопределенной ситуациях будет истинным «безумием» надеяться на некое предварительное знание, то есть знание априори относительно вероятностей, описанных в учебнике Гюйгенса

{90}
.

Бернулли видел ответ на вопрос таким же, каким позднее его увидит Джаггер: вместо того, чтобы зависеть от данных нам вероятностей, мы должны определить их сами, посредством наблюдений. Будучи математиком, Бернулли добивался точности мысли. Допустим, перед вами вращаются несколько рулеточных колес. Как точно сможете вы определить неявные вероятности и с какой долей уверенности? Об этом мы поговорим в следующей главе, однако это не те вопросы, на которые Бернулли смог ответить. Вместо них он нашел ответ на вопрос, тесно связанный с вышеупомянутыми: насколько четко неявные вероятности отражаются в реальных результатах? Бернулли принял за очевидное то, что мы вполне оправданно ожидаем: с увеличением числа попыток наблюдаемые периодичности с большей или меньшей точностью отразят неявные вероятности. Бернулли конечно же не был первым, кто так считал. Однако он стал первым, кто формально рассмотрел данную проблему, перевел идею в плоскость доказательства и выразил в количественной форме, задавая вопрос: сколько попыток необходимо и насколько уверенными мы можем быть? Он также стал одним из первых, кто оценил важность нового изобретения — математического анализа — при решении подобных задач.


Год, когда Бернулли назначили профессором Базельского университета, оказался важнейшим годом в истории математики: в этот год Готфрид Лейбниц опубликовал свой революционный труд, в котором изложил основы интегрального исчисления — дополнение к работе 1684 г. об исчислении дифференциальном. Ньютон напечатает собственную работу по данной теме в 1687 г., в своих «Математических началах натуральной философии» (часто сокращаемых до «Начал»). В этих прогрессивных работах будет содержаться ключ к работе Бернулли на тему теории случайности.

Ко времени своих публикаций и Лейбниц, и Ньютон уже не один год размышляли на данную тему, однако из их практически одновременных публикаций трудно было понять, кому принадлежит честь открытия. Великий математик Карл Пирсон (он еще встретится нам в главе 8) сказал: о репутации математиков «последующие поколения судят не по тому, что те сделали, а по тому, что современники приписали тем»
{91}

. Возможно, Ньютон и Лейбниц согласились бы с подобным утверждением. В любом случае ни один, ни другой не оказались на высоте, к тому же тот, кто настаивал на первенстве, был известен своей резкостью. В то время результат казался запутанным. Немцы и швейцарцы узнали о математическом анализе из труда Лейбница, а англичане и многие французы — из работы Ньютона. С точки зрения современности разница между обоими трудами невелика, однако в конце концов вклад Ньютона часто выделяется, потому как кажется: он в самом деле был первым, а в «Началах» применил свое изобретение для создания современной физики — таким образом «Начала» становятся величайшим научным трудом. Однако Лейбниц разработал более удачную систему обозначений, именно его символы зачастую используются в современном математическом анализе.

Понять было непросто как Ньютона, так и Лейбница. Помимо того, что «Начала» Ньютона называли величайшим научным трудом, их считали также и «одной из самых недоступных для понимания книг, которые когда-либо были написаны»
{92}
. А труд Лейбница, если верить биографам Якоба Бернулли, «вообще никто не понимал»; он отличался не только туманностью изложения, но и обилием опечаток. Иоганн, брат Якоба, сказал, что это «скорее загадка, нежели разъяснение»
{93}

. И в самом деле, работы эти оказались до того невнятными, что ученые высказывали предположение, будто и Лейбниц, и Ньютон намеренно затуманили смысл, чтобы отпугнуть всякого рода любителей. Однако такое таинственное свойство работ сыграло Якобу Бернулли только на руку, поскольку действительно способствовало отделению зерен от плевел, а интеллект Бернулли подпадал именно под первую категорию. Как только он расшифровал мысли Лейбница, в его распоряжении оказалось оружие, которым владела лишь горстка людей в целом мире, а уже с помощью этого оружия Бернулли мог запросто решить задачи, к которым другие не могли даже подступиться.

Набор основных понятий и для математического анализа, и для работы Бернулли заключается в последовательностях, рядах и пределах. Термин «последовательность» для математика значит практически то же самое, что и для любого другого: определенный порядок следования элементов, таких как точки или числа. Ряды — это не что иное, как сумма последовательностей чисел. Если создается впечатление, будто элементы последовательности ведут к чему-то — к определенной конечной точке или конкретному числу, — то в таком случае мы говорим о пределе последовательности.

Хотя математический анализ представляет собой очередное затруднение на пути к пониманию последовательностей, он, как и многие другие идеи, уже был известен древним грекам. В V в. до н. э. греческий философ Зенон с помощью любопытной последовательности сформулировал парадокс, над которым до сих пор любят поспорить студенты философского факультета, особенно после того, как пропустят по кружке-другой пива. Парадокс Зенона заключается в следующем. Предположим, ученик хочет подойти к двери, расстояние до которой — 1 метр. (В качестве единицы измерения мы берем метр, однако это для удобства; то же самое верно для мили и т. д.) Прежде, чем достигнуть двери, он должен достигнуть точки на полпути к ней. Однако для того, чтобы достигнуть точки на полпути, он прежде должен достигнуть точки на полпути к точке на полпути к двери — иными словами, точки на расстоянии одной четверти пути до двери. И так далее до бесконечности. То есть, чтобы дойти до конечного пункта, он должен пройти следующие последовательности расстояний:

1
/
2
метра,
1
/
4
метра,
1
/
8
метра и так далее. Зенон утверждал: так как последовательности выстраиваются до бесконечности, ученику придется идти бесконечное число конечных отрезков пути. Зенон высказался, что это займет у ученика бесконечное количество времени. И вывод Зенона: он никуда не придет.

В течение столетий кто только ни пытался разрешить это затруднение: от Аристотеля до Канта. Диоген, основатель школы киников, решил подойти к задаче с позиций эмпирических: он просто-напросто сделал несколько шагов и тем самым наглядно продемонстрировал, что дошел до пункта назначения. Тем из нас, кто не учился на факультете философии, подобное решение покажется вполне приемлемым. Однако для Зенона этого было бы недостаточно. Зенон сознавал противоречие между логическим доказательством и доказательством на уровне физических ощущений, вот только он, в отличие от Диогена, доверял именно логике. И застрял на этом вопросе не только Зенон. Даже Диогену пришлось признать, что его собственный ответ оставляет нас перед вопросом, приводящим в тупик (и, как оказалось, отличающимся глубиной): если доказательство, полученное с помощью наших органов чувств, верно, тогда что неверно в логических построениях Зенона?

Рассмотрим последовательность расстояний в парадоксе Зенона:
1
/
2
метра,
1
/
4
метра,
1
/
8
метра,
1
/
16

метра и так далее (градация все уменьшается). Эта последовательность обладает бесконечным числом ограничений, поэтому вычислить ее сумму путем простого сложения не получится. Однако можно заметить, что хотя число ограничений бесконечно, ограничения эти в своей последовательности все уменьшаются и уменьшаются. Может, существует конечное равновесие между бесконечным потоком ограничений и их бесконечно уменьшающимся размером? Этот вопрос как раз относится к тому самому типу вопросов, на которые возможно ответить, прибегнув к понятиям последовательностей, рядов и пределов. Чтобы увидеть его в действии, не нужно пытаться подсчитать, как далеко зайдет ученик после всей бесконечности Зеноновых интервалов, нужно каждый раз рассматривать по интервалу. Вот расстояния, которые прошел ученик после первых нескольких интервалов:

• После первого интервала:
1
/
2
метра
• После второго интервала:
1
/
2
метра +
1
/
4
метра =
3
/
4
метра
• После третьего интервала:
1
/
2
метра +
1
/
4
метра +
1
/
8
метра =
7
/
8
метра
• После четвертого интервала:
1
/
2
метра +
1
/
4
метра +
1
/
8
метра +
1
/
16
метра =
15
/
16
метра
Таково распределение чисел:
1
/
2
метра,
3
/
4
метра,
7
/
8
метра,
15
/
16

метра… Знаменатель — степень двойки, числитель на одну часть меньше знаменателя. Глядя на таким образом распределившиеся числа, можно вычислить: через 10 интервалов ученик пройдет
1 023
/
1 024
метра; через 20 интервалов —
1 048 575
/
1 048 576

метра и так далее. Из распределения чисел ясно, что Зенон прав — чем больше интервалов, тем больше получаемая сумма расстояний. Однако Зенон не прав, когда говорит, что сумма стремится к бесконечности. Наоборот, числа приближаются к 1; математики сказали бы, что 1 метр является пределом данной последовательности расстояний. Что имеет смысл, потому что хотя Зенон и раздробил путь ученика на бесконечное количество интервалов, он, в конце концов, должен пройти всего 1 метр.

Парадокс Зенона о количестве времени, которое потребуется на то, чтобы пройти путь, но никак не о расстоянии. Если ученик будет шагать в строгом соответствии с интервалами Зенона, ему, конечно же, придется попотеть (не говоря уже о том, что он должен будет совершать крошечные, меньше миллиметра шаги)! Однако если он станет передвигаться с постоянной скоростью, не соблюдая воображаемые Зеноновы интервалы — а почему бы и нет? — время, которое потребуется на преодоление каждого из интервалов, будет пропорционально расстоянию, пройденному за этот интервал, а поскольку в целом отрезок пути конечен, конечно и общее время и — к счастью для всех нас — движение все-таки возможно.

Хотя современная концепция пределов была разработана намного позже того времени, в котором жил Зенон, да и не только он, а и Бернулли — это произошло в XIX в.
{94}

— именно она составляет суть математического анализа, и именно таковы по сути своей попытки Якоба Бернулли исследовать связь между вероятностями и наблюдением. В частности, Бернулли изучил, что происходит в пределе сколь угодно большого числа многократных наблюдений. Подбросьте сбалансированную монету 10 раз: у вас может выпасть 7 орлов. Однако если вы подбросите монету сто тысяч миллиардов раз, у вас, скорее всего, получится половина на половину. В 1940-х гг. южноафриканский математик Джон Керрич решил проверить это на практике, подбрасывая монету множество раз, приближавшееся к ста тысячам миллиардов — на самом деле 10 тыс. — и записывая результат каждого броска

{95}
. Вы можете подумать: этот математик мог бы заняться чем-нибудь более полезным, однако он в то время был военнопленным — его угораздило оказаться в Копенгагене как раз тогда, когда немцы в апреле 1940 г. захватили Данию. Согласно полученным данным, после 100 бросков орлы получались только в 44%, однако к тому времени, когда было сделано 10 тыс. бросков, цифра оказалась гораздо ближе к половине: 50,67%. Как выразить этот феномен количественно? Ответ на этот вопрос дал Бернулли.

Согласно свидетельствам историка и философа Иэна Хэкинга, работа Бернулли «явилась для общественности ярким предвестником всего того, что нам известно о ней теперь; ее математическая глубина, широчайшее практическое применение, двойственность и приглашение к философским размышлениям. Вероятность проявилась во всей своей полноте». Если же привести более скромные слова Бернулли, то его исследование оказалось «не лишенным новизны и в то же время… невероятной практичности». Бернулли писал, что это стоило ему «огромных усилий»

{96}
. Он работал над своим трудом двадцать лет.

Важнейшим достижением за все двадцать лет непрерывной работы Якоб Бернулли считал «золотую теорему». Ее современные версии, разнящиеся техническими деталями, известны под разными названиями: теорема Бернулли, закон больших чисел, обычный закон больших чисел. Фраза «закон больших чисел» фигурирует потому, что, как мы уже говорили, теорема Бернулли связана со способом, с помощью которого результаты отражают неявные вероятности в процессе многократных наблюдений. Однако мы будем придерживаться терминологии Бернулли и станем называть его теорему «золотой теоремой», потому как будем иметь дело с ее первоначальной версией

{97}
.

Хотя Бернулли интересовало практическое применение, в некоторых его излюбленных примерах фигурирует предмет, в большинстве домов отсутствующий: заполненный разноцветными голышами сосуд. Согласно одной постановке задачи, Бернулли представил сосуд с 3 тыс. белых голышей и 2 тыс. черных, то есть в процентном соотношении как 60% и 40% соответственно. Вы наугад несколько раз вынимаете голыши из сосуда, но «с заменой», то есть перед тем, как вынуть следующий голыш, заменяете уже вынутый, чтобы сохранять соотношение 3 к 2. Таким образом, заранее известно, каковы шансы вынуть белый голыш: 3 из 5 или 60%. В связи с этим экспериментом основной вопрос Бернулли звучит так: насколько строго количество белых голышей будет держаться в рамках 60% и с какой вероятностью?

Пример с сосудом хорош тем, что те же самые математические выкладки, описывающие выемку голышей из сосуда, могут быть применены и в случае описания любых серий испытаний, в которых каждое испытание имеет два возможных исхода, при условии, если эти исходы случайны, а испытания не зависят друг от друга. В наше время подобную последовательность испытаний называют испытаниями по схеме Бернулли, а серию испытаний — процессом Бернулли. Когда случайное испытание имеет два возможных исхода, один часто в произвольной форме называют «удачным», а другой — «неудачным». Названия эти весьма условны и порой не имеют ничего общего с обыденными значениями слов — ну, скажем, если вам не терпится читать эту книгу дальше, она, мол, удачная, а если вы используете ее, чтобы не дать замерзнуть себе и своей любимой после того, как все поленья в камине выгорели, то неудачная. Подбрасывание монеты, решение голосовать за кандидата А или кандидата В, рождение мальчика или девочки, приобретение или отказ от приобретения той или иной вещи, излечение или невозможность излечения, даже жизнь или смерть — все это примеры испытаний по схеме Бернулли. Действия, имеющие своим результатом множественные исходы, также могут быть смоделированы по схеме Бернулли, если вопрос формулируется так, чтобы ответом на него было «да» или «нет», например: «Кость выпала стороной 4?» или «Остался ли вообще лед на Северном полюсе?» Таким образом, хотя Бернулли писал о голышах и сосудах, все его примеры в равной степени применимы к этим и многим другим аналогичным ситуациям.

И вот, разобравшись, возвращаемся к сосуду, 60% голышей в котором белые. Если вынуть из сосуда 100 голышей (положив им замену), можно обнаружить, что именно 60 из вынутых белые, но можно вынуть и 50, 59 белых голышей. Каковы шансы того, что из вынутых вами голышей белых будет от 58% до 62%? Каковы шансы того, что вы вынете белых голышей от 59% до 61%? Насколько вы можете быть уверены, если вместо 100 голышей вынете 1 тыс. или даже 1 миллион? Вы никогда не можете быть уверены на все 100%, но возможно ли вынуть достаточно голышей для того, чтобы шансы, скажем, того, что вы вынете белых голышей от 59,9% до 60,1%, стали равны 99,9999%? «Золотая теорема» Бернулли и применима как раз в таких случаях.

Чтобы воспользоваться ею, придется совершить два выбора. Во-первых, вы должны определить, какая погрешность является для вас приемлемой. Насколько должен быть близок к 60% ряд ваших испытаний? Вам нужно выбрать интервал, например, плюс или минус 1%, 2% или 0,00001%. Во-вторых, вы должны решить, какая неопределенность является для вас приемлемой. Вы не можете быть уверены на 100% в том, что испытание выдаст результаты, к которым вы стремитесь, но вы можете позаботиться о том, чтобы получать удовлетворительный результат в 99 случаях из 100 или 999 случаях из 1 тыс.

«Золотая теорема» сообщает о том, что всегда возможно вынуть достаточно голышей для того, чтобы быть почти уверенным в том, какой процент белых голышей из вынутых будет ближе всего к 60%, и это несмотря на то, насколько требовательны вы в своем определении этого «почти уверен» и «ближе всего». С помощью теоремы также выводится формула числа испытаний, которые «достаточны» в рамках приведенного выше определения.

Первая часть закона была достижением на понятийном уровне, именно она и осталась в современной версии теоремы. Что же до второй части — формулы Бернулли — то важно понять: хотя «золотая теорема» определяет число испытаний, достаточных для достижения уверенности и точности, она не говорит, что невозможно достичь этого при меньшем числе испытаний. Это не влияет на первую часть теоремы, для которой достаточно знать лишь то, что число определенных испытаний конечно. Однако Бернулли также намеревался использовать число, выведенное с помощью формулы, в практических целях. Возьмем числовой пример, который Бернулли придумал сам, хотя контекст я изменил. Предположим, 60% избирателей в Базеле поддерживают мэра. Скольких человек необходимо опросить, чтобы шансы обнаружить, что мэра поддерживают от 58% до 62%, равнялись 99,9%, то есть, чтобы получить результаты с точностью плюс-минус 2%? (Предположим, оставаясь в согласии с Бернулли, что опрошенные люди выбраны наугад, однако с заменой. Другими словами, возможно, что одного и того же человека вы опросите более одного раза.) Ответ — 25 550, во времена Бернулли почти все население Базеля. Тот факт, что число это невозможно, от Бернулли не ускользнул. Он также знал, что опытные игроки интуитивно угадывают свои шансы на удачу в новой игре, основываясь на выборке, гораздо меньшей, чем тысячи испытаний.

Одна из причин того, почему численная оценка Бернулли была так далека от оптимальной, заключается в следующем: его доказательство было основано на множественных аппроксимациях. Другой причиной было то, что в качестве стандарта достоверности он выбрал 99,9% — то есть, он предполагал, что получит неверный ответ (ответ, который отличается от верного более чем на 2%) менее чем в 1 случае из 1000. А это чересчур высокий стандарт. Бернулли назвал его моральной достоверностью, имея в виду степень достоверности, которой, по его мнению, должен обладать человек здравомыслящий, чтобы принять рациональное решение. В наше время мы отказались от понятия моральной достоверности в пользу того, о чем поговорим в последней главе — о статистической значимости — подразумевая, что ваш ответ будет неверным менее чем в 1 случае из 20. Возможно, это скорее к вопросу о том, насколько сильно поменялся мир с тех пор.


Все материалы, размещенные в боте и канале, получены из открытых источников сети Интернет, либо присланы пользователями  бота. 
Все права на тексты книг принадлежат их авторам и владельцам. Тексты книг предоставлены исключительно для ознакомления. Администрация бота не несет ответственности за материалы, расположенные здесь

Report Page