(Не)совершенная случайность

(Не)совершенная случайность

Леонард Млодинов

Глава 4
ПРОКЛАДЫВАЯ ПУТЬ К УСПЕХУ

Если бы средневековый игрок в азартные игры понял математические выкладки Кардано в области теории вероятностей, он заработал бы неплохие деньги, играя с менее искушенными напарниками. В наши дни Кардано прославился бы и разбогател на книжках вроде «Игры в кости с новичками: пособие для „чайников“». Но в XVI в. работа Кардано осталась незамеченной, а его «Трактат об азартных играх» вышел в свет через много лет после смерти самого автора. Почему же «Трактат» остался практически без внимания? Мы уже говорили о том, что одним из затруднений было отсутствие разработанной системы алгебраических записей. Во времена Кардано она начала развиваться, но все еще находилась в зачатке. Однако оставался еще один барьер, который только предстояло преодолеть: Кардано жил во времена, когда магическим заклинаниям доверяли больше, нежели математическим формулам. Люди той эпохи не стремились упорядочить природу, описать ее феномены в числах, поэтому теория влияния случайности на эти самые феномены была обречена на непонимание. Как потом оказалось, проживи Кардано еще лет двадцать-тридцать, он бы и труды свои написал иначе, да и приняли бы их совсем по-другому, поскольку через несколько десятилетий после его смерти в мышлении и верованиях европейцев произошли перемены исторического масштаба. Они получили название научной революции.

Революция была своего рода бунтом против того образа мысли, который господствовал в Европе, расстававшейся со Средними веками: в те времена представления о мире не подвергались глубокому исследованию и систематизации. В одном городе торговцы украли одежду у повешенного — они верили, что эго повысит их продажи пива. Прихожане другого города верили, что можно излечиться от заболевания, если нагишом обойти вокруг церковного алтаря, распевая всякие богохульства
{66}

. Один коммерсант старался не справлять нужду в «не том» туалете, считая, что туалет этот приносит неудачу. Вообще-то, коммерсант был биржевым трейдером, он поделился своей тайной с журналистом из Си-эн-эн в 2003 г.
{67}

Да, некоторые до сих пор верят в приметы, однако на сегодняшний день для любознательных существуют хотя бы научные объяснения, доказывающие или отрицающие эффективность соблюдения этих примет. Если современник Кардано выигрывал в кости, причем без применения математического анализа, он произносил благодарственную молитву, ну или считал, что ему помогли «счастливые» носки, и впредь не стирал их. Сам Кардано считал, что полосы неудачи случаются по причине «потери благосклонности судьбы» и что один из способов вернуть удачу — удачно сыграть в кости. Если в руке зажата счастливая «семерка», к чему вся эта возня с математикой?

Большинство считает, что началась научная революция в 1583 г, всего через семь лет после смерти Кардано. Легенда гласит, что именно в этом году в Пизанском университете на лекции сидел один студент, который вместо того, чтобы внимать словам службы, смотрел на нечто гораздо более занимательное: на подвесную вращавшуюся лампу. Используя свой пульс в качестве таймера, студент, Галилео Галилей, заметил: время, за которое лампа проходит большую дугу, равно времени, за которое она проходит малую дугу. Из этого наблюдения родился закон: период колебаний маятника не зависит от его амплитуды. Наблюдения Галилео отличались точностью и практичностью, они были простыми, но знаменовали собой новый подход к описанию физических явлений: наука, исследуя законы природы, стала основываться на опыте и эксперименте, а не на интуитивных догадках и отдельных умозаключениях. Однако самое главное в том, что эти опыты и эксперименты стали проводиться с помощью математических вычислений.

Исходя из своих научных знаний, Галилео написал небольшую работу об азартных играх: «Размышления на тему игры в кости». Работа была напечатана по заказу покровителя Галилео, герцога Тосканского. Герцога интересовал вопрос: почему при броске трех костей чаще выпадает 10, чем 9? Вероятность такой ситуации равна всего лишь примерно 8%, ни 10, ни 9 не выпадает слишком часто. Видимо, герцог много играл, раз подметил такую небольшую разницу, и вполне возможно, что на самом деле он нуждался не в уме Галилео, а в пошаговой программе избавления от зависимости. Неизвестно, почему, но Галилео тема не вдохновила. Однако как любой советник, который хочет сохранить за собой место, он оставил свое недовольство при себе и выполнил заказ.

Если бросить один кубик, шансы того, что выпадет любая конкретная цифра, равны 1 из 6. Однако если бросить два кубика, шансы в сумме уже не равны. Например, для суммы кубиков, равной 2, существует 1 шанс из 36, однако шанс увеличивается в два раза, если сумма равна 3. Причина в том, что сумму 2 можно получить только одним способом: подбросив два кубика, которые выпадут единицами, но сумму 3 можно получить уже двумя способами: подбросив два кубика, которые выпадут единицами; подбросив кубики так, чтобы выпали 1 и 2 (или 2 и 1). Таким образом, мы продвигаемся еще дальше в понимании случайных процессов, которые и составляют тему данной главы: развитие систематических методов анализа числа способов тех или иных исходов.


Ошибку герцога можно обнаружить, если подойти к проблеме с позиций талмудиста: чем пытаться объяснить, почему 10 выпадает чаще, чем 9, лучше задаться вопросом: а почему 10 должна выпадать чаще, чем 9? Появляется соблазн — поверить, что два кубика должны выпадать в сумме 10 и 9 с одинаковой частотой: и 10, и 9 можно представить 6 способами, в зависимости от того, как упадут три кубика. Для 9 можно записать такие способы следующим образом: (621), (531), (522), (441), (432) и (333). Для 10 это (631), (622), (541), (532), (442) и (433). Применяя закон Кардано о пространстве элементарных событий, получаем: вероятность благоприятного исхода равна соотношению исходов, которые благоприятны. Сумма 9 и 10 может быть составлена теми же 6 способами. Тогда почему одно вероятнее другого?

А потому, что, как я уже говорил, закон пространства элементарных событий в его первоначальной форме применим только к тем исходам, которые обладают равной вероятностью. Вышеприведенные же комбинации таковыми не являются. К примеру, исход (631), то есть бросок, в результате которого выпадают 6, 3 и 1, обладает шестикратной вероятностью по сравнению с исходом (333), поскольку хотя и существует один способ, в результате которого выпадают три 3, способов, в результате которых получаются 6, 3 и 1, целых шесть: можно получить 6, затем 3 и 1, или же сначала 1, затем 3, а потом уже 6, ну и так далее. Представим запись исхода, где порядок бросков записывается трехзначными, разделенными запятой комбинациями. Тогда все то, что мы только что сказали, можно выразить короче: исход (631) состоит из возможностей (1,3,6), (1,6,3), (3,1,6), (3,6,1), (6,1,3) и (6,3,1), а исход (333) состоит только лишь из (3,3,3). Как только мы упростили запись таким вот образом, стало понятно: исходы одинаково вероятны, и можно применить закон. Поскольку существует 27 способов получить общую сумму в 10, бросая три кости, но лишь 25 способов получить сумму в 9, Галилей заключил: при броске трех костей вероятность выпадения 10 равна

27
/
25
, то есть около 1,08 раза больше.

Решая поставленный перед ним вопрос, Галилей косвенным образом применил следующий важный принцип: «Вероятность события зависит от числа его исходов». Ничего удивительного в самом утверждении нет. Удивительно том, насколько обширен эффект, и насколько трудно его подсчитать. Предположим, вы даете 25 шестиклассникам список из 10 вопросов, на которые надо ответить быстро, не задумываясь. Подсчитаем возможные результаты одного конкретного ученика: он отвечает на все вопросы правильно; отвечает на 1 вопрос неправильно — тут возможны 10 вариантов, потому как вопросов 10; отвечает на 2 вопроса неправильно — возможны 45 вариантов, потому как вопросы группируются в 45 пар, и так далее. В результате в среднем в группе студентов, пытающихся угадать правильные варианты ответов, на каждого студента, который угадает 100% правильных ответов, приходится около 10 студентов, которые дадут 90% правильных ответов, и 45 студентов, которые дадут 80% правильных ответов. Шансы получить около 50 баллов, конечно, все же выше, но в классе из 25 учеников вероятность того, что хотя бы один ученик получит 80 баллов или выше, если все ученики отвечают наугад, равна 75%. Так что если вы преподаватель со стажем, то наверняка в вашей многолетней практике среди всех учеников, которые являлись на урок неподготовленными и более-менее угадывали ответы на контрольной работе, были и такие, которые умудрялись в итоге получить четверки или даже пятерки.

Несколько лет назад в Канаде проводилась государственная лотерея, и когда устроители решили вернуть накопившиеся призовые деньги, за которыми никто так и не пришел, они на собственном горьком опыте убедились в том, как важен тщательный подсчет
{68}

. Они приобрели 500 машин в качестве бонусов и запрограммировали компьютер таким образом, чтобы из 2,4 млн подписчиков на лотерейные билеты машина произвольно выбрала 500 счастливчиков. Затем список был опубликован. К смущению устроителей лотереи, один господин заявил (надо заметить, справедливо), что выиграл две машины. Устроителям было чему изумиться: из 2,4 млн номеров компьютер вслепую выбрал один и тот же номер дважды. Как могло такое случиться? Может, ошибка в программе?

Задача с подсчетом номеров билетов, с которой столкнулись устроители лотереи, ничем не отличается от задачи с днями рождения: сколько в группе должно быть людей, чтобы встретились два человека с одинаковым днем рождения (при этом предполагается, что одинаково возможны любые дни)? Большинство скажут, что ответ — количество дней в году, поделенное пополам, то есть что-то около 183. Но ответ этот можно счесть правильным для совсем другого вопроса: сколько людей с разными днями рождения должны присутствовать в группе, чтобы день рождения одного из них совпал с вашим? Если не заложено никаких ограничений относительно того, у каких именно двух человек дни рождения должны совпасть, то факт того, что существует множество возможных пар людей, дни рождения которых могли бы совпасть, коренным образом меняет дело. И число таких людей на удивление мало: всего 23. Если вернуться к канадской лотерее, где выборка производилась из 2,4 млн билетов, окажется, что необходимо гораздо больше, чем 500 номеров, чтобы номер повторился. И тем не менее исключать такую возможность не стоит. Шансы совпадения фактически равны примерно 5%. Цифра небольшая, однако стоило ее принять во внимание и запрограммировать компьютер таким образом, чтобы он тут же вычеркивал из списка каждый выбранный номер. Да, а того счастливчика, который оказался обладателем двух машин, от одной попросили отказаться. Только он не согласился.

А вот еще один загадочный случай, связанный с лотереей и многих удививший; произошел он в Германии 21 июня 1995 г.
{69}

Проводилась лотерея под названием «Лото 6/49», означавшая, что шесть выигрышных чисел нужно выбрать из чисел от 1 до 49. В день объявления результатов были названы выигрышные числа: 15–25–27–30–42–48. Точно такая же последовательность уже выпадала ранее, 20 декабря 1986 г. Впервые за 3,016 выборок выигрышная последовательность повторилась. Каковы шансы такого повтора? Вовсе не такие уж и плохие, как вам может показаться. Если использовать математический подход, окажется, что шанс повтора равен примерно 28%.

Поскольку в случайном процессе число исходов события и определяет его вероятность, главный вопрос в следующем: как подсчитать число исходов того или иного события? Похоже, Галилей не проникся всей значимостью подобного вопроса. В своем исследовании случайностей дальше задачи о костях он не пошел, а в начале работы упомянул, что пишет об игральных костях только «по обязанности»
{70}

. В 1633 г. в «благодарность» за пропаганду нового научного подхода Галилей был осужден Инквизицией. Однако наука и теология давно уже разошлись, и теперь ученые анализируют вопрос «как?», а богословы, облегчая жизнь ученым, размышляют над вопросом «почему?». Пройдет совсем немного времени, и ученый нового поколения, с юности воспринявший новую научную философию Галилея, проведет анализ вероятности и достигнет новых высот, поднявшись на такой уровень, без которого большая часть современной науки была бы попросту невозможна.


Научная революция разворачивалась, и границы теории случайности ширились от Италии к Франции, где ученые нового типа, подвергавшие сомнению Аристотеля и следовавшие Галилею, совершали еще более глубокие открытия, нежели Кардано или сам Галилей. На этот раз важность нового труда будет признана, он всколыхнет всю Европу. И хотя новые идеи будут проиллюстрированы все теми же азартными играми, первый ученый нового типа окажется математиком, впоследствии ставшим игроком, в противоположность Кардано, игроку, впоследствии ставшему математиком. Звали этого ученого Блез Паскаль.

Паскаль родился в июне 1623 г. в Клермон-Ферране, находившемся в 400 км от Парижа. Отец Блеза разглядел одаренность сына, семья переехала в Париж, и в возрасте тринадцати лет Блез был представлен недавно созданному кружку, который сами его члены называли Академией Мерсенна — по имени францисканского монаха-основателя. В кружок Мерсенна входили прославленный философ-математик Рене Декарт и гениальный математик-любитель Пьер де Ферма. Все они, представлявшие собой диковинную смесь блистательных умов и крайне высокого самомнения, вместе с Мерсенном, помешивавшим это «варево», оказали на юного Блеза большое влияние. Блез подружился с Ферма и Декартом, воспринял новый научный метод. «Пусть все ученики Аристотеля… — писал он, — признают: истинный учитель есть эксперимент, ему надлежит внимать при изучении Физики»

{71}
.

Но каким образом оторванный от жизни, скучный и набожный субъект стал завсегдатаем сборищ городских игроков? Время от времени Паскаль страдал болями в желудке, у него были трудности с глотанием и прохождением пищи по пищеводу, он испытывал изнуряющую слабость и сильную головную боль, внезапно потел, иногда у него даже отнимались ноги. Паскаль стоически следовал предписаниям врачей, назначавших кровопускание, слабительные, питье молока ослицы и другие «отвратительные» микстуры, от которых его едва не выворачивало — «истинные пытки», по словам сестры Жильберты

{72}
. К тому времени Паскаль уехал из Парижа, однако летом 1647 г. в возрасте двадцати четырех лет он вернулся вместе с сестрой Жаклин и, совсем отчаявшись, пустился на поиски средства, которое все же излечило бы его. Новые врачи дали наисовременнейший совет: «отказаться от напряженного умственного труда и как можно полнее отдаться развлечениям
{73}

». И вот Паскаль стал учиться отдыхать и расслабляться, начал проводить время в компании других молодых людей, ведущих праздный образ жизни. В 1651 г. умирает отец Блеза, и Паскаль неожиданно становится молодым человеком с наследством. Он нашел деньгам хорошее применение, по крайней мере, если исходить из рекомендаций врачей. Биографы Паскаля называют период с 1651 по 1654 гг. периодом «мирской суеты». Сестра Жильберта писала про «годы, которым он нашел наихудшее применение»
{74}

. Хотя Блез приложил некоторые усилия, чтобы сделать себе рекламу, его научные изыскания ни к чему не привели, зато он мог похвастать отменным здоровьем.

Зачастую в истории исследования случайности подтолкнувшее эти исследования событие само оказывалось случайным. Так вышло и с работой Паскаля: бросив исследования, он занялся изучением шанса. Началось все с того, что один из приятелей Блеза по развлечениям представил его одному снобу сорока пяти лет по имени Антуан Гомбо. Гомбо, этот аристократ с титулом шевалье де Мере, считал себя знатоком по части флирта и, судя по списку своих любовных похождений, таковым и был. Однако де Мере также имел репутацию опытного игрока, предпочитал высокие ставки и так часто выигрывал, что его даже подозревали в мошенничестве. И вот когда этот де Мере столкнулся с неким затруднением, он обратился за помощью к Паскалю. С этого началось исследование, которое положило конец «заклятию» Паскаля, отвратившему его от занятий наукой, обеспечило де Мере место в истории идей и разрешило проблему, которая так и оставалась нерешенной в работе Галилея, заказанной герцогом.

Шел 1654 год. Затруднение, с которым де Мере обратился к Паскалю, заключалось в очках. Предположим, вы с партнером играете, у вас равные шансы, и тот, кто первым наберет определенное количество очков, выигрывает. Игра прерывается; в это самое время один из игроков лидирует. Как справедливее всего разделить сумму? При разрешении этой проблемы, заметил де Мере, нужно учесть шансы каждого игрока на выигрыш исходя из того, у кого их, этих шансов, на момент прерывания игры больше. Но как произвести подсчет?

Паскаль сознавал, что, каким бы ни был ответ, методы для подсчета еще не изобрели, и эти методы, какими бы они ни были, могут иметь серьезные последствия в соревновательной ситуации любого рода. Как это часто случается в теоретических изысканиях, Паскаль испытывал неуверенность, даже замешательство по поводу своего плана действий. Он решил, что нужен посредник, то есть еще один математик, с которым можно было бы обсудить свои догадки. Марен Мерсенн, великий переговорщик, уже несколько лет как умер, однако Паскаль не порвал связей с членами Академии. И в 1654 г. завязалась одна из величайших переписок в истории математики: между Паскалем и Пьером де Ферма.

В 1654 г. Ферма занимал высокий пост — королевский советник парламента — в Тулузе. На заседаниях суда изысканно одетый Ферма занимался тем, что приговаривал согрешивших должностных лиц к сожжению. В свободное же от заседаний время Ферма прилагал свои аналитические способности к более изящным занятиям — занятиям математикой. Возможно, Пьер де Ферма и не был профессионалом, но за ним закрепилась слава величайшего математика.

Ферма получил видную должность отнюдь не благодаря своим честолюбивым устремлениям или неким заслугам. Она досталась ему старым, добрым способом — он постепенно поднимался по служебной лестнице, занимая кресла своих начальников, умиравших от чумы. Когда ему пришло письмо от Паскаля, Ферма и сам только-только начинал оправляться от этой болезни. Болезнь протекала настолько тяжело, что друг Ферма, Бернар Медон, успел объявить Ферма умершим. Когда же Ферма не умер, смущенный, но явно обрадованный Медон отозвал свое объявление, однако нет никаких сомнений в том, что Ферма одной ногой был уже в могиле. В конечном счете Ферма, который был старше Паскаля на двадцать два года, пережил своего новообретенного друга по переписке на несколько лет.

Как мы увидим, задача, связанная с очками, возникает в такой области, в которой оба, и Паскаль, и Ферма, соперничают. В ходе переписки Паскаль и Ферма разрабатывают свои подходы и предлагают несколько вариантов решения. Однако метод Паскаля оказался проще, да и изящнее, к тому же он мог быть применен к большому кругу задач, с которыми приходится сталкиваться в повседневной жизни. Поскольку задача впервые возникла в связи с заключением пари, возьмем пример на тему спорта. В 1996 г. команда «Смельчаки Атланты» победила «Нью-Йоркских Янки» в первых 2 играх бейсбольной Мировой серии (по условиям первая команда, победившая в 4 играх, становится чемпионом). Факт победы «Смельчаков» в первых 2 играх совсем не обязательно означал, что ее игроки сильнее других. И все же он служил знаком того, что они явно лучше. Для выполнения нашей текущей задачи предположим, что и та, и другая команды обладали равными шансами на победу в каждой игре, и что в первых 2 играх лишь по случайности выиграла команда «Смельчаки Атланты».

Основываясь на предположении, зададимся вопросом: в каком случае можно было бы поставить на «Янки», то есть, каковы были шансы «Янки» на лидирующее положение? Чтобы вычислить это, мы подсчитываем все возможности для «Янки» выиграть и сравниваем их с количеством возможностей проиграть. 2 игры из серии уже были сыграны, оставалось сыграть еще 5 игр. Каждая игра содержала в себе 2 возможных исхода: «Янки» выигрывают (Y) или «Смельчаки» выигрывают (В). Получается 2 в 5-й степени, то есть 32 возможных исхода. К примеру, «Янки» могли бы выиграть 3 игры, а следующие 2 проиграть: YYYBB; либо они могли выигрывать и проигрывать через раз: YBYBY. (В последнем случае, поскольку «Смельчаки» выиграли бы 4 игры с 6 игрой, последняя игра вообще не состоялась бы, однако к этому моменту мы еще вернемся). Вероятность того, что «Янки» еще смогут выиграть в Мировой серии, была равна числу исходов с хотя бы 4 выигранными играми, разделенному на общее число исходов — 32; вероятность того, что «Смельчаки» выиграли бы, была равна числу исходов с хотя бы еще 2 выигранными играми, также разделенному на 32.


Все материалы, размещенные в боте и канале, получены из открытых источников сети Интернет, либо присланы пользователями  бота. 
Все права на тексты книг принадлежат их авторам и владельцам. Тексты книг предоставлены исключительно для ознакомления. Администрация бота не несет ответственности за материалы, расположенные здесь

Report Page