Компьютерные сети

Компьютерные сети

Н. Олифер

Рис. 16.13. Разделение адресного пространства 129.44.0.0 сети класса В на сети разного размера путем использования масок переменной длины
Следующая порция адресов, составляющая четверть всего адресного пространства (2
14
), назначена для сети 2 129.44.128.0 с маской 255.255.192.0.

Далее в пространстве адресов был «вырезан» небольшой фрагмент для создания вспомогательной сети 3, предназначенной для связывания внутреннего маршрутизатора R2 с внешним маршрутизатором R1. Для нумерации узлов в такой вырожденной сети достаточно отвести два двоичных разряда. Из четырех возможных комбинаций номеров узлов: 00,01,10 и 11 два номера имеют специальное назначение и не могут быть присвоены узлам, но оставшиеся два 10 и 01 позволяют адресовать порты маршрутизаторов. Поле номера узла в таком случае имеет два двоичных разряда, маска в десятичной нотации имеет вид 255.255.255.252, а номер сети, как видно из рисунка, равен 129.44.192.0.

1 0000 О 0 IIО О 10 110 0
111
11111111111111
ПРИМЕЧАНИЕ

Глобальным связям между маршрутизаторами, соединенными по двухточечной схеме, не обязательно давать IP-адреса. Однако чаще всего такой вырожденной сети все же дают IP-адрес. Помимо прочего, это делается, например, для того, чтобы скрыть внутреннюю структуру сети и обращаться к ней по одному адресу входного порта маршрутизатора, в данном примере по адресу 129.44.192.1, применяя технику трансляции сетевых адресов (Network Address Translation, NAT
59
).

Оставшееся адресное пространство администратор может «нарезать» на разное количество сетей разного объема в зависимости от своих потребностей. Из оставшегося пула (2
14
- 4) адресов администратор, например, может образовать еще одну достаточно большую сеть с числом узлов 2
13
— на рисунке это сеть 4. При этом свободными останутся почти столько же адресов (2
13

- 4), которые также могут быть использованы для создания новых сетей. К примеру, из этого «остатка» можно образовать 31 сеть, каждая из которых равна размеру сети класса С, и к тому же еще несколько сетей меньшего размера. Ясно, что разбиение может быть другим, но в любом случае с помощью масок переменного размера администратор имеет больше возможностей рационально использовать все имеющиеся у него адреса.
На рис. 16.14 показан пример сети, структурированной с помощью масок переменной длины.

Сеть 1 129.44.0.0 Маска 255.255.128.0 2
15
узлов
.129.44.0.1
129.44.224.5Сеть 4 129.44.224.0 Маска 255.255.224.0 2
13
узлои
Рис. 16.14. Структуризация сети масками переменной длины
Давайте посмотрим, как маршрутизатор R2 обрабатывает поступающие на его интерфейсы пакеты (табл. 16.9).
Таблица 16.9. Таблица маршрутизатора R2 в сети с масками переменной длины
Адрес назначения
Маска
Адрес следующего маршрутизатора
Адрес порта
Расстояние
129.44.0.0
255.255.128.0
129.44.128.3
129.44.128.1
1

129.44.128.0
255.255.192.0
129.44.128.1
129.44.128.1
Подключена
129.44.192.0
255.255.255.252
129.44.192.1
129.44.192.1
Подключена
129.44.224.0
255.255.224.0
129.44.128.2
129.44.128.1
1
0.0.0.0
0.0.0.0
129.44.192.2
129.44.192.1
-
Пусть поступивший на R2 пакет имеет адрес назначения 129.44.162.5. Поскольку специфические маршруты в таблице отсутствуют, маршрутизатор переходит ко второй фазе — фазе последовательного анализа строк на предмет поиска совпадения с адресом назначения:

□ (129.44.162.5) AND (255.255.128.0) = 129.44.128.0 - нет совпадения;
□ (129.44.162.5) AND (255.255.192.0) = 129.44.128.0 - совпадение;
□ (129.44.162.5) AND (255.255.255.252) = 129.44.162.4 - нет совпадения;
□ (129.44.162.5) AND (255.255.224.0) - 129.44.160.0 - нет совпадения.
Таким образом, совпадение имеет место в одной строке. Пакет будет отправлен в непосредственно подключенную к данному маршрутизатору сеть на выходной интерфейс 129.44.128.1.

Если пакет с адресом 129.44.192.1 поступает из внешней сети и маршрутизатор R1 не использует маски, пакет передается маршрутизатору R2, а потом снова возвращается в соединительную сеть. Очевидно, что такие передачи пакета не выглядят рациональными.

Маршрутизация будет более эффективной, если в таблице маршрутизации маршрутизатора R1 задать маршруты масками переменной длины (табл. 16.10). Первая из приведенных двух записей говорит о том, что все пакеты, адреса которых начинаются с 129.44, должны быть переданы на маршрутизатор R2. Эта запись выполняет агрегирование адресов всех подсетей, созданных на базе одной сети 129.44.0.0. Вторая строка говорит о том, что среди всех возможных подсетей сети 129.44.0.0 есть одна (129.44.192.0/30), которой пакеты можно направлять непосредственно, а не через маршрутизатор R2.

ПРИМЕЧАНИЕ -

В IP-пакетах при использовании механизма масок по-прежнему передается только IP-адрес назначения, а маска сети назначения не передается. Поэтому из IP-адреса пришедшего пакета невозможно выяснить, какая часть адреса относится к номеру сети, а какая — к номеру узла. Если маски во всех подсетях имеют один размер, то это не создает проблем. Если же для образования подсетей применяют маски переменной длины, то маршрутизатор должен как-то узнавать, каким адресам сетей какие маски соответствуют. Для этого используются протоколы маршрутизации, переносящие между маршрутизаторами не только служебную информацию об адресах сетей, но и о масках, соответствующих этим номерам. К таким протоколам относятся протоколы RIPv2 и OSPF, а вот, например, протокол RIP маски не переносит и для маршрутизации на основе масок переменной длины не подходит.

Таблица 16.10. Фрагмент таблицы маршрутизатора R1
Адрес назначения
Маска
Адрес следующего маршрутизатора
Адрес порта
Расстояние
129.44.0.0
255.255.0.0
129.44.192.1
129.44.191.2
2
129.44.192.0
255.255.255.192
129.44.192.2
129.44.192.2
Подключена
Перекрытие адресных пространств

Со сложностями использования масок администратор впервые сталкивается не тогда, когда начинает конфигурировать сетевые интерфейсы и создавать таблицы маршрутизации, а гораздо раньше — на этапе планирования сети. Планирование включает определение количества сетей, из которых будет состоять корпоративная сеть, оценку требуемого количества адресов для каждой сети, получение пула адресов от поставщика услуг, распределение адресного пространства между сетями. Последняя задача часто оказывается нетривиальной, особенно когда решается в условиях дефицита адресов.

Рассмотрим пример использования масок для организации перекрывающихся адресных пространств.

Пусть на некотором предприятии было принято решение обратиться к поставщику услуг для получения пула адресов, достаточного для создания сети, структура, которой показана на рис. 16.15. Сеть клиента включает три подсети. Две из них — это надежно защищенные от внешних атак внутренние сети отделов: сеть Ethernet на 600 пользователей и сеть Token Ring на 200 пользователей. Предприятие также предусматривает отдельную, открытую для доступа извне сеть на 10 узлов, главное назначение которой — предоставление информации в режиме открытого доступа для потенциальных клиентов. Такого рода участки корпоративной сети, в которых располагаются веб-серверы, FTP-серверы и другие источники публичной информации, называют демилитаризованной зоной (Demilitarized Zone, DMZ). Еще одна сеть на два узла потребуется для связи с поставщиком услуг, то есть общее число адресов, требуемых для адресации сетевых интерфейсов, составляет 812. Кроме того, необходимо, чтобы пул доступных адресов включал для каждой из сетей широковещательные адреса, состоящие только из единиц, а также адреса, состоящие только из нулей. Учитывая также, что в любой сети адреса всех узлов должны иметь одинаковые префиксы, становится очевидным, что минимальное количество адресов, необходимое клиенту для построения задуманной сети, может значительно отличаться от значения 812, полученного простым суммированием.

В данном примере поставщик услуг решает выделить клиенту непрерывный пул из 1024 адресов. Значение 1024 выбрано как наиболее близкое к требуемому количеству адресов, равному степени двойки (2
10

= 1024). Поставщик услуг выполняет поиск области такого размера в имеющемся у него адресном пространстве — 131.57.0.0/16, часть которого, как показано на рис. 16.16, уже распределена. Обозначим распределенные участки и владеющих ими клиентов через SI, S2 и S3. Поставщик услуг находит среди нераспределенных еще адресов непрерывный участок размером 1024 адреса, начальный адрес которого кратен размеру данного участка. Таким образом, наш клиент получает пул адресов 131.57.8.0/22, обозначенный на рисунке через S.

Рис. 16.15. Сети поставщика услуг и клиента
Адресный пул S нового клиента 131.57.8.0/22 на 1024 узла
256 узлов (81 -131.57.0.0/24)'
256 узлов
256 узлов (82" 131.57.2.0/24) Частично 256 узлов у распределенное
адресное
пространство
256 узлов 256 узлов
512 узлов (S3 -131.57.6.0/23)
к
\поставщика услуг/
Сеть клиента - S
600 узлов
Ethernet
R3±

WWW


Все материалы, размещенные в боте и канале, получены из открытых источников сети Интернет, либо присланы пользователями  бота. 
Все права на тексты книг принадлежат их авторам и владельцам. Тексты книг предоставлены исключительно для ознакомления. Администрация бота не несет ответственности за материалы, расположенные здесь

Report Page