Компьютерные сети

Компьютерные сети

Н. Олифер

□ 10Base-5 — коаксиальный кабель диаметром 0,5 дюйма, называемый «толстым» коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента: 500 м (без повторителей). Максимальное количество узлов подключаемых к сегменту — 100. Максимальное число сегментов — 5 (4 повторителя), из которых.только 3 могут использоваться для подключения узлов, а 2 играют роль удлинителей сети.

□ iOBase-2 — коаксиальный кабель диаметром 0,25 дюйма, называемый «тонким» коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента — 185 м (без повторителей). Максимальное количество узлов подключаемых к сегменту — 30. Максимальное число сегментов — 5 (4 повторителя), из которых только 3 могут использоваться для подключения узлов, а 2 играют роль удлинителей сети.

□ iOBase-Т — кабель на основе неэкранированной витой пары (UTP). Образует звездообразную топологию на основе концентратора (многопортового повторителя). Расстояние между концентратором и конечным узлом — не более 100 м. Между любыми двумя узлами сети может быть не более 4-х концентраторов (так называемое «правило 4-х хабов»).

□ 10Base-F — волоконно-оптический кабель. Топология аналогична топологии стандарта IOBase-Т, но расстояние между концентратором и конечным узлом может достигать 2000 м. Правило 4-х хабов остается в силе.

В стандарте 10Base-2 в качестве передающей среды используется «тонкий» коаксиал Ethernet. Тонкий коаксиальный кабель дешевле толстого, поэтому сети 10Base-2 иногда называли Cheapernet (дословно — дешевая сеть). Станции подключаются к кабелю с помощью высокочастотного Т-коннектора, представляющего собой тройник, один отвод которого соединяется с сетевым адаптером, а два других — с двумя концами разрыва кабеля. Стандарт 10Base-2 очень близок к стандарту 10Base-5, но трансиверы в нем объединены с сетевыми адаптерами за счет того, что более гибкий тонкий коаксиальный кабель может быть подведен непосредственно к выходному разъему платы сетевого адаптера, установленной в шасси компьютера. Кабель в данном случае «висит» на сетевом адаптере, что затрудняет физическое перемещение компьютеров, однако сама операция соединения компьютеров в сеть оказывается гораздо проще, чем для сети на «толстом» коаксиале.

Реализация этого стандарта на практике приводит к наиболее простому решению для кабельной сети, так как для соединения компьютеров требуются только сетевые адаптеры, Т-коннекторы и терминаторы на 50 Ом. Однако этот вид кабельных соединений наиболее сильно подвержен авариям и сбоям. Кабель более восприимчив к помехам, чем «толстый»

' В отличие от методов, использующих несколько несущих частот; такие методы называются широкополосными и имеют в своем составе слово «Broadband». Эти методы, хотя и были стандартизованы, не получили распространения в период популярности локальных сетей на разделяемой среде.

коаксиал. В моноканале имеется большое количество механических соединений: каждый Т-коннектор дает три механических соединения, два из которых имеют жизненное значение для всей сети. Пользователи имеют доступ к разъемам и могут нарушить целостность моноканала. Кроме того, эстетика и эргономичность этого решения оставляют желать лучшего, так как от каждой станции через Т-коннектор отходят два довольно заметных провода, которые под столом часто образуют моток кабеля — запас, необходимый на случай даже небольшого перемещения рабочего места.

Сеть Etemet на витой паре, описываемая стандартом 10Base-T, стала следующим шагом на пути повышения эксплуатационных характеристик Ethernet.
Одним из существенных недостатков Ethernet на коаксиальном кабеле являлось отсутствие оперативной информации о состоянии кабеля и сложность нахождения места его повреждения. Поэтому поиск неисправностей стал привычной процедурой и головной болью многочисленной армии сетевых администраторов коаксиальных сетей Ethernet.

Альтернатива появилась в середине 80-х годов, когда благодаря использованию витой пары и повторителей сети Ethernet стали гораздо более ремонтопригодными.

К этому времени телефонные компании уже достаточно давно применяли многопарный кабель на основе неэкранированной витой пары для подключения телефонных аппаратов внутри зданий. Идея приспособить этот популярный вид кабеля для локальных сетей оказалась очень плодотворной, так как многие здания уже были оснащены нужной кабельной системой. Оставалось разработать способ подключения сетевых адаптеров и прочего коммуникационного оборудования к витой паре таким образом, чтобы изменения в сетевых адаптерах и программном обеспечении сетевых операционных систем были минимальными по сравнению с сетями Ethernet на коаксиале. Эта попытка оказалась успешной — переход на витую пару требует только замены приемника и передатчика сетевого адаптера, а метод доступа и все протоколы канального уровня остаются теми же, что и в сетях Ethernet на коаксиале.

Правда, для соединения узлов в сеть теперь обязательно требуется коммуникационное устройство — многопортовый повторитель Ethernet на витой паре.

Устройство такого повторителя схематично изображено на рис. 12.8. Каждый сетевой адаптер соединяется с повторителем двумя витыми парами. Одна витая пара требуется для передачи данных от станции к повторителю (выход ТХ сетевого адаптера), другая — для передачи данных от повторителя к станции (вход RX сетевого адаптера). Повторитель побитно принимает сигналы от одного из конечных узлов и синхронно передает их на все свои остальные порты, исключая тот, с которого поступили сигналы, одновременно улучшая их электрические характеристики.

Многопортовый повторитель часто называют концентратором, или хабом (от английского hub — центр, ступица колеса), так как в нем сконцентрированы соединения со всеми конечными узлами сети. Фактически хаб имитирует сеть на коаксиальном кабеле в том отношении, что физически отдельные отрезки кабеля на витой паре логически все равно представляют единую разделяемую среду. Все правила доступа к среде по алгоритму CSMA/CD сохраняются.

При создании сети Ethernet на витой паре с большим числом конечных узлов хабы можно соединять друг с другом иерархическим способом, образуя древовидную структуру (рис. 12.9). Добавление каждого хаба изменяет физическую структуру, но оставляет без изменения логическую структуру сети. То есть независимо от числа хабов в сети сохраняется одна общая для всех интерфейсов разделяемая среда, так что передача кадра с любого интерфейса блокирует передатчики всех остальных интерфейсов.

Рис. 12.8. Повторитель Ethernet на витой паре
Рис. 12.9. Иерархическое соединение хабов

Физическая структуризация сетей, построенных на основе витой пары, повышает надежность и упрощает обслуживание сети, поскольку в этом случае появляется возможность контролировать состояние и локализовывать отказы отдельных кабельных отрезков, подключающих конечные узлы к концентраторам. В случае обрыва, короткого замыкания или неисправности сетевого адаптера работа сети может быть быстро восстановлена путем отключения соответствующего сегмента кабеля.

Для контроля целостности физического соединения между двумя непосредственно соединенными портами,» стандарте 10Base-T введен так называемый тест целостности соединения (Link Integrity Test, LIT). Эта процедура заключается в том, что в те периоды, когда порт не посылает или получает кадры данных, он посылает своему соседу импульсы длительностью 100 нс через каждые 16 мс. Если порт принимает такие импульсы от своего соседа, то он считает соединение работоспособным и, как правило, индицирует это зеленым светом светодиода.

НбЗД^и%м<» отиспользуемого физического уровня в стандартах Ethernet На 10 Мбит/с вводится ^мш&имайьное колйчествоузлов, псщ»слючаемых^раЬделяемой:ореде. Это огра*

Не все варианты физического уровня стандарта Ethernet на 10 Мбит/с дают возможное построить сеть с максимальным количеством узлов. Например, сеть 10Base-5 может име максимум 100 х 3 - 3 = 297 узлов (3 подключения уходят на повторители, соединяющ] сегменты), а сеть 10 Base-2 — только 87 узлов. И лишь сети 10Base-T и 10Base-F дав такую возможность.
Более подробную информацию о стандартах физического уровня Ethernet можно найти на сайте
www.olifer.co.uk

в документе «Физические стандарты Ethernet».
Максимальная производительность сети Ethernet
Производительность сети зависит от скорости передачи кадров по линиям связи и скорост обработки этих кадров коммуникационными устройствами, передающими кадры меж; своими портами, к которым эти линии связи подключены. Скорость передачи кадров г линиям связи зависит от используемых протоколов физического и канального уровне например Ethernet на 10 Мбит/с, Ethernet на 100 Мбит/с, Token Ring или FDDI.

Скорость, с которой протокол передает биты по линии связи, называется номинальной скоростью протокола.

Скорость обработки кадров коммуникационным устройством зависит от производитель^ сти его процессоров, внутренней архитектуры и других параметров. Очевидно, что скорост коммуникационного устройства должна соответствовать скорости работы линии. Если ot меньше скорости работы линии, то кадры будут стоять в очередях и отбрасываться пр переполнении последних. В то же время нет смысла применять устройство, которое в сотн раз производительнее, чем того требует скорость подключаемых к нему линий.

Для оценки требуемой производительности коммуникационных устройств, имеющи порты Ethernet, необходимо оценить производительность сегмента Ethernet, но не в бита в секунду (ее мы знаем — это 10 Мбит/с), а в кадрах в секунду, так как именно этот показ; тель помогает оценить требования к производительности коммуникационных устройст; Это объясняется тем, что на обработку каждого кадра, независимо от его длины, мост, ко\ мутатор или маршрутизатор тратит примерно равное время, которое уходит на просмот таблицы продвижения пакета, формирование нового кадра (для маршрутизатора) и т. i

При постоянной битовой скорости количество кадров, поступающих на коммуникационно устройство в единицу^времени, является, естественно, максимальным при их минимал* ной длине. Поэтому для коммуникационного оборудования наиболее тяжелым режимо! является обработка потока кадров минимальной длины.
Теперь рассчитаем максимальную производительность сегмента Ethernet в таких единица? как число переданных кадров (пакетов) минимальной длины в секунду
ПРИМЕЧАНИЕ-

При указании производительности сетей термины «кадр» и «пакет» обычно используются как синонимы. Соответственно, аналогичными являются и единицы измерения производительности кадры в секунду (кадр/с) и пакеты в секунду (пакет/с).

Для расчета максимального количества кадров минимальной длины, проходящих по сегменту Ethernet, вспомним, что подсчитанное нами ранее время, затрачиваемое на передачу кадра минимальной длины (576 бит), составляет 57,5 мкс. Прибавив межкадровый интервал в 9,6 мкс, получаем, что период следования кадров минимальной длины составляет 67,1 мкс. Отсюда максимально возможная пропускная способность сегмента Ethernet составляет 14 880 кадр/с (рис. 12.10). Естественно, что наличие в сегменте нескольких узлов снижает эту величину за счет ожидания доступа к среде, а также за счет коллизий.

<4-
57,5 мкс
—►
9,6 мкс <—
<-
Т = 67,1 мкс
—►
8
12
2
46
4
< ...........—■-— - ►Рис. 12.10. К расчету пропускной способности протокола Ethernet

Кадры максимальной длины технологии Ethernet имеют поле данных 1500 байт, что вместе со служебной информацией дает 1518 байт, а с преамбулой составляет 1526 байт, или 12 208 бит. Максимально возможная пропускная способность сегмента Ethernet для кадров максимальной длины составляет 813 кадр/с. Очевидно, что при работе с большими кадрами нагрузка на мосты, коммутаторы и маршрутизаторы довольно ощутимо снижается.

Теперь рассчитаем, какой максимально полезной пропускной способностью, измеряемой в битах в секунду, обладают сегменты Ethernet при использовании кадров разного размера.
Полезной пропускной способностью протокола называется максимальная скорость передачи пользовательских данных, которые переносятся полем данных кадра.
Эта пропускная способность всегда меньше номинальной битовой скорости протокола Ethernet за счет нескольких факторов:
□ служебной информации кадра;

□ межкадровых интервалов (IPG);
□ ожидания доступа к среде.
Для кадров минимальной длины полезная пропускная способность равна:
В = 14880 х 46 х 8 = 5,48 Мбит/с.
Это несколько меньше, чем 10 Мбит/с, но следует учесть, что кадры минимальной длины используются в основном для передачи квитанций, так что к передаче собственно данных файлов эта скорость имеет небольшое отношение.
Для кадров максимальной длины полезная пропускная способность равна:
В
п
= 813 х 1500 х 8 = 9,76 Мбит/с.

При использовании кадров среднего размера с полем данных в 512 байт пропускная способность протокола составляет 9,29 Мбит/с.
В двух последних случаях пропускная способность протокола оказалась достаточно близкой к предельной пропускной способности в 10 Мбит/с, однако следует учесть, что при расчете мы предполагали, что двум взаимодействующим станциям «не мешают» никакие другие станции сети, то есть отсутствуют коллизии и ожидание доступа.

Таким образом, при отсутствии коллизий коэффициент использования сети зависит от размера поля данных кадра и имеет максимальное значение 0,976 при передаче кадров максимальной длины.
Технологии Token Ring и FDDI

Token Ring и FDDI — это функционально намного более сложные технологии, чем Ethernet на разделяемой среде. Разработчики этих технологий стремились наделить сеть на разделяемой среде многими положительными качествами: сделать механизм разделения среды предсказуемым и управляемым, обеспечить отказоустойчивость сети, организовать приоритетное обслуживание для чувствительного к задержкам трафика, например голосового. Нужно отдать им должное — во многом их усилия оправдались, и сети FDDI довольно долгое время успешно использовались как магистрали сетей масштаба кампуса, в особенности в тех случаях, когда нужно было обеспечить высокую надежность магистрали.

Механизм доступа к среде в сетях Token Ring и FDDI является более детерминированным, чем в сетях Ethernet.

Рассмотрим его на примере сети Token Ring, станции которой связаны в кольцо (рис. 12.11), так что любая станция непосредственно получает данные только от одной станции — той, которая является предыдущей в кольце, а передает данные своему ближайшему соседу вниз по потоку данных. Скорость передачи данных в первых сетях Token Ring, разработанных компанией IBM, была всего 4 Мбит/с, но затем была повышена до 16 Мбит/с. Основная среда передачи данных — витая пара. Для адресации станций сети Token Ring (и FDDI) используют МАС-адреса того же формата, что и Ethernet.

Метод доступа Token Ring основан на передаче от узла к узлу специального кадра — токена, или маркера, доступа, при этом только узел, владеющий токеном, может передавать свои кадры в кольцо, которое становится в этом случае разделяемой средой. Существует лимит на период монопольного использования среды — это так называемое время удержания токена, по истечение которого станция обязана передать токен своему соседу по кольцу. В результате такие ситуации, как неопределенное время ожидания доступа к среде, характерные для Ethernet, здесь исключены (по крайней мере, в тех случаях, когда сетевые адаптеры станций исправны и работают без сбоев). Максимальное время ожидания всегда нетрудно оценить, так как оно равно произведению времени удержания токена на количество станций в кольце. Так как станция, получившая токен, но не имеющая в этот момент кадров для передачи, передает токен следующей станции, то время ожидания может быть меньше.

Отказоустойчивость сети Token Ring определяется использованием в сети повторителей (не показанных на рис. 12.11) для создания кольца. Каждый такой повторитель имеет несколько портов, которые образуют кольцо за счет внутренних связей между передатчиками и приемниками. В случае отказа или отсоединения станции повторитель организует обход порта этой станции, так что связность кольца не нарушается.

Поддержка чувствительного к задержкам трафика достигается за счет системы приоритетов кадров. Решение о приоритете конкретного кадра принимает передающая станция. Токен также всегда имеет некоторый уровень текущего приоритета. Станция имеет право захватить переданный ей токен только в том случае, если приоритет кадра, который она хочет передать, выше приоритета токена (или равен ему). В противном случае станция обязана передать токен следующей по кольцу станции.

Благодаря более высокой, чем в сетях Ethernet, скорости, детерминированности распределения пропускной способности сети между узлами, а также лучших эксплуатационных характеристик (обнаружение и изоляция неисправностей), сети Token Ring были предпочтительным выбором для таких чувствительных к подобным показателям приложений, как банковские системы и системы управления предприятием.

Технологию FDDI можно считать усовершенствованным вариантом Token Ring, так как в ней, как и в Token Ring, используется метод доступа к среде, основанный на передаче токена, а также кольцевая топология связей, но вместе с тем FDDI работает на более высокой скорости и имеет более совершенный механизм отказоустойчивости.

Технология FDDI стала первой технологией локальных сетей, в которой оптическое волокно, начавшее применяться в телекоммуникационных сетях с 70-х годов прошлого века, было использовано в качестве разделяемой среды передачи данных. За счет применения оптических систем скорость передачи данных удалось повысить до 100 Мбит/с (позж появилось оборудование FDDI на витой паре, работающее на той же скорости).

В тех случаях, когда нужно было обеспечить высокую надежность сети FDDI, применялос двойное кольцо (рис. 12.12). В нормальном режиме станции используют для передач] данных и токена доступа первичное кольцо, а вторичное простаивает
45

. В случае отказа например, при обрыве кабеля между станциями 1 и 2, как показано на рис. 12.12, первич ное кольцо объединяется со вторичным, вновь образуя единое кольцо. Этот режим работь сети называется режимом свертывания колец. Операция свертывания производите] средствами повторителей (не показанных на рисунке) и/или сетевых адаптеров FDD] Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одно» направлении (на диаграммах это направление изображается против часовой стрелки), а п< вторичному — в обратном (изображается по часовой стрелке). Поэтому при образованш общего кольца из двух колец передатчики станций по-прежнему остаются подключенны ми к приемникам соседних станций, что позволяет правильно передавать и принимав информацию соседними станциями.

2 2
В стандартах FDDI много внимания отводится различным процедурам, которые позволяют определить факт наличия отказа в сети, а затем произвести необходимое реконфигурирование. Технология FDDI расширяет механизмы обнаружения отказов технологии Token Ring за счет резервных связей, которые предоставляет второе кольцо.
Более подробную информация о технологиях Token Ring и FDDI можно найти на сайте www. olifer.co.uk в документах «Технология Token Ring» и «Технология FDDI».

Беспроводные локальные сети IEEE 802.11
Проблемы и области применения беспроводных локальных сетей
Беспроводные локальные сети (Wireless Local Area Network, WLAN) в некоторых случаях являются предпочтительным по сравнению с проводной сетью решением, а иногда просто единственно возможным. В WLAN сигнал распространяется с помощью электромагнитных волн высокой частоты.

Преимущество беспроводных локальных сетей очевидно — их проще и дешевле разворачивать и модифицировать, так как вся громоздкая кабельная инфраструктура оказывается излишней. Еще одно преимущество — обеспечение мобильности пользователей. Однако за эти преимущества беспроводные сети расплачиваются длинным перечнем проблем, которые несет с собой неустойчивая и непредсказуемая беспроводная среда. Мы уже рассматривали особенности распространения сигналов в такой среде в главе 10.

Помехи от разнообразных бытовых приборов и других телекоммуникационных систем, атмосферные помехи и отражения сигнала создают серьезные трудности для надежного приема информации. Локальные сети — это, прежде всего, сети зданий, а распространение радиосигнала внутри здания еще сложнее, чем вне его. В стандарте IEEE 802.11 приводится изображение распределения интенсивности сигнала (рис. 12.13). В стандарте подчеркивается, что это статическое изображение, в действительности картина является динамической, и при перемещении объектов в комнате распределение сигнала может существенно измениться.


Все материалы, размещенные в боте и канале, получены из открытых источников сети Интернет, либо присланы пользователями  бота. 
Все права на тексты книг принадлежат их авторам и владельцам. Тексты книг предоставлены исключительно для ознакомления. Администрация бота не несет ответственности за материалы, расположенные здесь

Report Page