Компьютерные сети

Компьютерные сети

Н. Олифер

Путем применения нескольких антенн геостационарные спутники обычно поддерживают большое количество каналов. Раньше для работы с геостационарными спутниками в качестве антенн требовались очень большие тарелки (диаметром до 10 м). Это затрудняло использование геостационарных спутников для небольших организаций и личных целей. Однако ситуация изменилась с появлением направленных антенн, устанавливаемых на спутниках. Такие антенны создают сигнал, который можно принимать с помощью сравнительно небольших наземных антенн, так называемых миниатюрных апертурных терминалов (Very Small Aperture Terminals, VSAT). Диаметр антенны VSAT составляет около 1 м. Наземные станции, оснащенные VSAT, предоставляют сегодня широкий набор услуг, к которым относятся телефония, передача данных, конференции.

Наряду с достоинствами у геостационарных спутников есть и недостатки. Наиболее очевидные связаны с большим удалением спутника от поверхности Земли. Это приводит к большим задержкам распространения сигнала — от 230 до 280 мс. При использовании спутника для передачи разговора или телевизионного диалога возникают неудобные паузы, мешающие нормальному общению.

Кроме того, на таких расстояниях потери сигнала высоту что означает необходимость применения мощных передатчиков и тарелок больших размеров (это не относится к антеннам VSAT, но при их использовании уменьшается область охвата).

Принципиальным недостатком геостационарного спутника с его круговой орбитой является также плохая связь для районову близких к Северному и Южному полюсам. Сигналы в таких районах проходят большие расстояния, чем в районах, расположенных в экваториальных и умеренных широтах, и, естественно, больше ослабляются. Решением является спутник с ярко выраженной эллиптической орбитой, который приближается к Земле как раз в районе Северного и Южного полюсов. Примером такого спутника являются спутники серии «Молния», которые запускаются Россией, имеющей большие территории на Крайнем Севере.

Место на орбите геостационарного спутника также регулируется союзом ITU. Сегодня наблюдается определенный дефицит таких мест, так как геостационарные спутники не могут располагаться на орбите ближе, чем 2° друг к другу. Из этого следует, что на орбите может находиться не более 180 геостационарных спутников. Так как не все страны в состоянии (пока) запустить геостационарный спутник, то здесь наблюдается та же ситуация, что и в конкурсе на получение определенного диапазона частот, только еще усиленная политическими амбициями стран.

Средне- и низкоорбитальные спутники

Класс среднеорбитальных спутников пока не так популярен, как геостационарных и низкоорбитальных. Среднеорбитальные спутники обеспечивают диаметр покрытия от 10 000 до 15 000 км и задержку распространения сигнала 50 мс. Наиболее известной услугой, предоставляемой спутниками этого класса, является глобальная система навигации (Global Positioning System, GPS), известная также под названием NAVigation Satellites providing Time And Range (NAVSTAR). GPS — это всеобщая система определения текущих координат пользователя на поверхности Земли или в околоземном пространстве. GPS состоит из 24 спутников — это то минимальное число спутников, которое необходимо для 100-процентного покрытия территории Земли. Первый тестовый спутник GPS был запущен в 1974 году, первый промышленный спутник — в 1978 году, а 24-й промышленный — в 1993 году. Спутники GPS летают на орбите высотой около 20 000 км. Помимо спутников в систему GPS входит сеть наземных станций слежения за ними и неограниченное количество пользовательских приемников-вычислителей, среди которых и ставшие очень популярными в последние годы приемники автомобильных систем навигации.

По радиосигналам спутников GPS-приемники пользователей устойчиво и точно определяют координаты; для этого на поверхности Земли приемнику необходимо принять сигналы как минимум от трех спутников. Погрешности не превышают десятков метров. Этого вполне достаточно для решения задач навигации подвижных объектов (самолеты, корабли, космические аппараты, автомобили и т. д.).

В СССР была разработана и реализована система аналогичного назначения под названием ГЛОНАСС (ГЛОбальная ЯАвигационная Спутниковая Система). Первый спутник ГЛОНАСС был запущен в октябре 1982 года, а в сентябре 1993 года система была официально введена в эксплуатацию. В 1995 году количество спутников достигло плановой цифры 24, но затем из-за проблем с финансированием не все выходившие из строя спутники заменялись новыми, поэтому было время, когда их число уменьшилось до 14, хотя в декабре 2008 количество спутников удалось увеличить до 18. Система ГЛОНАСС совместима с GPS, существует навигационное оборудование, которое может принимать сигналы от спутников обеих систем.

Достоинства и недостатки низкоорбитальных спутников противоположны соответствующим качествам геостационарных спутников. Главное их достоинство — близость к Земле, а значит, пониженная мощность передатчиков, малые размеры антенн и небольшое время распространения сигнала (около 20-25 мс). Кроме того, их легче запускать. Основной недостаток — малая площадь покрытия, диаметр которой составляет всего около 8000 км. Период оборота такого спутника вокруг Земли составляет 1,5-2 часа, а время видимости спутника наземной станцией — всего 20 минут. Это значит, что постоянная связь с помощью низкоорбитальных спутников может быть обеспечена, только когда на орбите находится достаточно большое их количество. Кроме того, атмосферное трение снижает срок службы таких спутников до 8-10 лет.

Если основным назначением геостационарных спутников является широковещание и дальняя связь, то низкоорбитальные спутники рассматриваются как важное средство поддержания мобильной связи.

В начале 90-х годов достоинства компактных терминальных устройств для низкоорбитальных спутников показались руководителям компании Motorola более важными, чем их недостатки. Вместе с несколькими крупными партнерами эта компания начала проект Indium, который имел весьма амбициозную цель — создать всемирную спутниковую сеть, обеспечивающую мобильную связь в любой точке земного шара. В конце 80-х еще не существовало такой плотной системы сот мобильной телефонии, как сегодня, так что коммерческий успех казался обеспеченным.

В 1997 группа из 66 спутников была запущена, а в 1998 году началась коммерческая эксплуатация системы Iridium. Спутники Iridium действительно покрывают всю поверхность земного шара, вращаясь по 6 орбитам, проходящим через полюсы Земли. На каждой орбите находится по 11 спутников, передатчики которых работают на частоте 1,6 ГГц с полосой пропускания 10 МГц. Эта полоса расходуется 240 каналами по 41 кГц каждый. За счет многократного использования частот система Iridium поддерживает 253 440 каналов, организуя системы скользящих по поверхности Земли сот. Для пользователей системы Iridium основным видом услуги является телефонная связь и передача данных со скоростью 2,4 Кбит/с.

Спутники Iridium обладают значительным интеллектом, они могут, пользуясь специальными межспутниковыми каналами, передавать друг другу информацию со скоростью 25 Мбит/с. Поэтому телефонный вызов идет от спутникового телефона Iridium прямо на спутник, находящийся в зоне видимости. Затем этот спутник маршрутизирует вызов через систему промежуточных спутников тому спутнику, который в данный момент ближе к вызываемому абоненту. Система Iridium представляет собой сеть с полным собственным стеком протоколов, поддерживающим всемирный роуминг.

К сожалению, коммерческие успехи Iridium оказались очень скромными, и через два года своего существования компания обанкротилась. Расчет на мобильных телефонных абонентов оказался неверным — к моменту начала работы наземная сеть сотовой связи уже покрывала большую часть территории развитых стран. А услуги по передаче данных со скоростью 2,4 Кбит/с не соответствовали потребностям пользователей конца XX века.

Сегодня система Iridium снова работает, теперь уже с новым владельцем и новым именем - Iridium Satellite. У нее теперь более скромные планы, связанные с созданием местных систем связи в тех частях земного шара, где другая связь практически отсутствует. Программное обеспечение спутников модернизируется «на лету», что позволило повысить скорость передачи данных до 10 Кбит/с. В феврале 2008 года компания Iridium Satellite объявила о новой программе под названием Iridium NEXT. В соответствии с этой программой к 2014 году будут запущены новые 66 спутников; все коммуникации со спутниками и между спутниками будут происходить на основе стека протоколов TCP/IP.

Другой известной системой низкоорбитальных спутников является Globalstar. В отличие от Iridium 48 низкоорбитальных спутников Globalstar выполняют традиционные для геостационарных спутников функции — принимают телефонные вызовы от мобильных абонентов и передают их ближайшей наземной базовой станции. Маршрутизацию вызовов выполняет базовая станция, перенаправляющая вызов базовой станции, ближайшей к спутнику, в зоне видимости которого находится вызываемый абонент. Межспутниковые каналы не используются. Помимо телефонных разговоров Globalstar передает данные со скоростью 4,8 Кбит/с.

Еще одна сеть LEO — Orbcomm предоставляет сервис, ориентированный на передачу коротких сообщений в режиме «машина-машина», например, между промышленными установками или датчиками, расположенными в труднодоступных районах. Доставка сообщений не всегда осуществляется в режиме реального времени. Если спутник невидим, терминал Orbcomm просто хранит пакеты, пока космический аппарат не войдет в зону видимости.

Это приводит к чрезвычайно значительной неравномерности в передаче данных. Вместо привычных для пользователей Интернета задержек в доли секунды, в этой сети паузы иногда измеряются минутами.
Технология широкополосного сигнала

Техника расширенного спектра разработана специально для беспроводной передачи. Она позволяет повысить помехоустойчивость кода для сигналов малой мощности, что очень важно в мобильных приложениях. Однако нужно подчеркнуть, что техника расширенного спектра — не единственная техника кодирования, которая применяется для беспроводных линий связи микроволнового диапазона. Здесь также применяются частотная (FSK) и фазовая (PSK) манипуляции, описанные в предыдущей главе. Амплитудная манипуляция (ASK) не используется по той причине, что каналы микроволнового диапазона имеют широкую полосу пропускания, а усилители, которые обеспечивают одинаковый коэффициент усиления для широкого диапазона частот, очень дороги.

Широкая полоса пропускания позволяет также применять модуляцию с несколькими несущими, когда полоса делится на несколько подканалов, каждый из которых имеет собственную несущую частоту. Соответственно, битовый поток делится на несколько подпотоков, текущих с более низкой скоростью. Затем каждый подпоток модулируется с помощью определенной несущей частоты, которая обычно кратна основной несущей частоте, то есть /о, 2/о, З/о и т. д. Модуляция выполняется с помощью обычных методов FSK или PSK. Такая техника называется ортогональным частотным мультиплексированием (Orthogonal Frequency Division Multiplexing, OFDM).

Перед передачей все несущие сворачиваются в общий сигнал путем быстрого преобразования Фурье. Спектр такого сигнала примерно равен спектру сигнала, кодируемого одной несущей. После передачи из общего сигнала путем обратного преобразования Фурье выделяются несущие подканалы, а затем из каждого канала выделяется битовый поток. Выигрыш в разделении исходного высокоскоростного битового потока на несколько низкоскоростных подпотоков проявляется в том, что увеличивается интервал между отдельными символами кода. Это означает, что снижается эффект межсимвольной интерференции, появляющийся из-за многолучевого распространения электромагнитных волн.

Расширение спектра скачкообразной перестройкой частоты

Идея метода расширения спектра скачкообразной перестройкой частоты (Frequency Hopping Spread Spectrum, FHSS) возникла во время Второй мировой войны, когда радио широко использовалось для секретных переговоров и управления военными объектами, например торпедами. Для того чтобы радиообмен нельзя было перехватить или подавить узкополосным шумом, было предложено вести передачу с постоянной сменой несущей в пределах широкого диапазона частот. В результате мощность сигнала распределялась по всему диапазону, и прослушивание какой-то определенной частоты давало только небольшой шум. Последовательность несущих частот выбиралась псевдослучайной, известной только передатчику и приемнику. Попытка подавления сигнала в каком-то узком диапазоне также не слишком ухудшала сигнал, так как подавлялась только небольшая часть информации.

Идею этого метода иллюстрирует рис. 10.12.
Частота А
F«f
8



r
F«]------1



11------1II
f
8
|_---
h
h“ “

h
h
F
e
h~---
------iii
f
7
/ *
r—““ '
h
-----—
F
7
|
F
6
F
6
II
Fs
“ -
-----‘^1—
h
——
h
t-
h“ “
—1
' Fs'
h “^“^1
——-—«III
f
4
f
4

h —‘-
1
-


---—111
F
3
P

h—* “1
l_----
---

\~— -1
h" “
l_ —■---<111
f
2
’ -----
F
4
11
Fi
““1

h“ “
Fi
11
i
_ ВремяПериод отсечки
Последовательность перестройки частот: F
7
-F
3
-F
4

-F ^ -F-io-Fe^-Fg-Fs-Fg Рис. 10.12. Расширение спектра скачкообразной перестройкой частоты

В течение определенного фиксированного интервала времени передача ведется на неизменной несущей частоте. На каждой несущей частоте для передачи дискретной информации применяются стандартные методы модуляции, такие как FSK или PSK. Чтобы приемник синхронизировался с передатчиком, для обозначения начала каждого периода передачи в течение некоторого времени передаются синхробиты. Так что полезная скорость этого метода кодирования оказывается меньше из-за постоянных накладных расходов на синхронизацию.

Несущая частота меняется в соответствии с номерами частотных подканалов, вырабатываемых алгоритмом псевдослучайных чисел. Псевдослучайная последовательность зависит от некоторого параметра, который называют начальным числом. Если приемнику и передатчику известны алгоритм и значение начального числа, то они меняют частоты в одинаковой последовательности, называемой последовательностью псевдослучайной перестройки частоты.

Если частота смены подканалов ниже, чем скорость передачи данных в канале, то такой режим называют медленным расширением спектра (рис. 10.13, а)\ в противном случае мы имеем дело с быстрым расширением спектра (рис. 10.13,6).

Метод быстрого расширения спектра более устойчив к помехам, поскольку узкополосная помеха, которая подавляет сигнал в определенном подканале, не приводит к потере бита, так как его значение повторяется несколько раз в различных частотных подканалах. В этом режиме не проявляется эффект межсимвольной интерференции, потому что ко времени прихода задержанного вдоль одного из путей сигнала система успевает перейти на другую частоту.
Частота >
k 1
Период передачи данных 0
0
Fio
1 1 1 1 1 1
MS ! ! !

Г-----1------1------1 1 1 1 1 1
Fg
r r r T-Г ---T--- T---- r----TV----Г-----j j 1 1 I I I I ‘
Fe
11111111111111111j11p**bJi-J
f
7
<- . - .if 11111111 i
T7
1 1 1 1 1 1 1 1 1 1 1 ’ 1
F
6
-г r r --1—--11 1 1 1 1 1 1 1 1 1
III _ ! ! !. !
f
5
r r r r--T-г r T----1------1------1 1 t 1 1 1 1 1 1 1! ! ! ! ! ! ! ! J !
F 4
[ Jllf [ [ f [ Г j [
F
3
i
,b
"'T .-----г r r r r r-----rI- * " ' H ! ! 1 ! ! 1 ! !
f
2
Г У r - f- 1- ri,- ; i J- r r t-1 1 1 1 1 1,1 1 1 1 1 1 1 1 1 * j 1 1 1
Fi
г I i i .

1 г т г т 1 1 1 1 1 1 1 1 1 1

Сигнал двоичного нуля Сигнал двоичной единицы
а
_ Время
Период передачи чипа
| | Сигнал двоичного нуля
РЯ Сигнал двоичной единицы
б
Рис. 10.13. Соотношение между скоростью передачи данных и частотой смены подканалов
Метод медленного расширения спектра таким свойством не обладает, но зато он проще в реализации и имеет меньшие накладные расходы.
Методы FHSS применяют в беспроводных технологиях IEEE 802.11 и Bluetooth.

В методах FHSS подход к использованию частотного диапазона не такой, как в других методах кодирования — вместо экономного расходования узкой полосы делается попытка занять весь доступный диапазон. На первый взгляд это кажется не очень эффективным — ведь в каждый момент времени в диапазоне работает только один канал. Однако последнее утверждение не всегда справедливо, поскольку коды расширенного спектра можно задействовать также и для мультиплексирования нескольких каналов в широком диапазоне. В частности, методы FHSS позволяют организовать одновременную работу нескольких каналов путем выбора для каждого канала таких псевдослучайных последовательностей, которые в каждый момент времени дают каждому каналу возможность работать на собственной частоте (конечно, это можно сделать, только если число каналов не превышает числа частотных подканалов).

Прямое последовательное расширение спектра

В методе прямого последовательного расширения спектра (Direct Sequence Spread Spectrum, DSSS) также используется весь частотный диапазон, выделенный для одной беспроводной линии связи. Однако в отличие от FHSS весь частотный диапазон занимается не за счет постоянных переключений с частоты на частоту, а за счет того, что каждый бит информации заменяется N битами, поэтому тактовая скорость передачи сигналов увеличивается в N раз. А это, в свою очередь, означает, что спектр сигнала также расширяется в А раз. Достаточно соответствующим образом выбрать скорость передачи данных и значение JV, чтобы спектр сигнала заполнил весь диапазон.

Цель кодирования методом DSSS та же, что методом FHSS — повышение помехоустойчивости. Узкополосная помеха будет искажать только определенные частоты спектра сигнала, так что приемник с большой степенью вероятности сможет правильно распознать передаваемую информацию.

Код, которым заменяется двоичная единица исходной информации, называется расширяющей последовательностью, а каждый бит такой последовательности — чипом. Соответственно, скорость передачи результирующего кода называют чиповой скоростью. Двоичный нуль кодируется инверсным значением расширяющей последовательности. Приемники должны знать расширяющую последовательность, которую использует передатчик, чтобы понять передаваемую информацию.

Количество битов в расширяющей последовательности определяет коэффициент расширения исходного кода. Как и в случае FHSS, для кодирования битов результирующего кода может использоваться любой вид модуляции, например BFSK.
Чем больше коэффициент расширения, тем шире спектр результирующего сигнала и тем больше степень подавления помех. Но при этом растет занимаемый каналом диапазон спектра. Обычно коэффициент расширения имеет значения от 10 до 100.

Примером расширяющей последовательности является последовательность Баркера (Barker), которая состоит из 11 бит: 10110111000. Если передатчик использует эту последовательность, то передача трех битов 110 ведет к отправке следующих битов:
10110111000 10110111000 01001000111.

Последовательность Баркера позволяет приемнику быстро синхронизироваться с передатчиком, то есть надежно выявлять начало последовательности. Приемник определяет такое событие, поочередно сравнивая получаемые биты с образцом последовательности. Действительно, если сравнить последовательность Баркера с такой же последовательностью, но сдвинутой на один бит влево или вправо, то мы получим меньше половины совпадений значений битов. Значит, даже при искажении нескольких битов с большой долей вероятности приемник правильно определит начало последовательности, а значит, сможет правильно интерпретировать получаемую информацию.

Метод DSSS в меньшей степени защищен от помех, чем метод быстрого расширения спектра, так как мощная узкополосная помеха влияет на часть спектра, а значит, и на результат распознавания единиц или нулей.
Множественный доступ с кодовым разделением

Как и в случае FHSS, кодирование методом DSSS позволяет мультиплексировать несколько каналов в одном диапазоне. Техника такого мультиплексирования называется множественным доступом с кодовым разделением (Code Division Multiplexing Access, CDMA). Она широко используется в сотовых сетях.
Хотя техника CDMA может применяться совместно с кодированием методом FHSS, на практике в беспроводной сети она чаще сочетается с методом DSSS.

Каждый узел сети, работающий по методу CDMA, посылает данные в разделяемую среду в те моменты времени, когда это ему нужно, то есть синхронизация между узлами отсутствует. Идея CDMA заключается в том, что каждый узел сети задействует собственное значение расширяющей последовательности. Эти значения выбираются так, чтобы принимающий узел, который знает значение расширяющей последовательности передающего узла, мог выделить данные передающего узла из суммарного сигнала, образующегося в результате одновременной передачи информации несколькими узлами.


Все материалы, размещенные в боте и канале, получены из открытых источников сети Интернет, либо присланы пользователями  бота. 
Все права на тексты книг принадлежат их авторам и владельцам. Тексты книг предоставлены исключительно для ознакомления. Администрация бота не несет ответственности за материалы, расположенные здесь

Report Page