Компьютерные сети

Компьютерные сети

Н. Олифер

Часть II


Технологии физического уровня
Физической основой любой компьютерной (и телекоммуникационной) сети являются линии связи. Без таких линий коммутаторы не могли бы обмениваться пакетами, и компьютеры оставались бы изолированными устройствами.

После изучения принципов построения компьютерных сетей в воображении читателя могла возникнуть достаточно простая картина компьютерной сети — компьютеры и коммутаторы, соединенные друг с другом отрезками кабеля. Однако при более детальном рассмотрении компьютерной сети все оказывается сложнее, чем это казалось при изучении модели OSI.

Дело в том, что специально выделенные кабрли используются для соединения сетевых устройств только на небольших расстояниях, то есть в локальных сетях. При построении сетей WAN и MAN такой подход крайне расточителен из-за высокой стоимости протяженных линий связи. К тому же на их прокладку необходимо получать разрешение. Поэтому гораздо чаще для связи коммутаторов в сетях WAN и MAN применяются уже существующие телефонные или первичные территориальные сети с коммутацией каналов. В этом случае в сети с коммутацией каналов создается составной канал, который выполняет те же функции, что и отрезок кабеля — обеспечивает физическое двухточечное соединение. Конечно, составной канал представляет собой гораздо более сложную техническую систему, чем кабель, но для компьютерной сети эти сложности прозрачны. Первичные сети специально строятся для создания канальной инфраструктуры, поэтому их каналы более эффективны по соотношению цена/пропускная способность. Сегодня в распоряжении проектировщика компьютерной сети имеются каналы первичных сетей для широкого диапазона скоростей — от 64 Кбит/с до 10 Пбит/с.

Несмотря на различия в физической и технической природе линий связи, их можно описать с помощью единого набора характеристик. Важнейшими характеристиками любой линии связи при передаче дискретной информации являются полоса пропускания, измеряемая в герцах (Гц), и емкость, или пропускная способность, измеряемая в битах в секунду (бит/с). Пропускная способность представляет собой скорость битового потока, передаваемого линией связи. Пропускная способность зависит от полосы пропускания линии и способа кодирования дискретной информации.

Все большую популярность приобретают беспроводные каналы. Они являются единственным типом каналов, обеспечивающих мобильность пользователей компьютерной сети. Кроме того, беспроводная связь применяется в тех случаях, когда кабели проложить невозможно или невыгодно — в малонаселенных районах, при доступе к жилым домам, уже охваченным кабельной инфраструктурой конкурентов и т. п. При беспроводной связи используются электромагнитные волны различной частоты — радиоволны, микроволны, инфракрасное излучение и видимый свет. Высокий уровень помех и сложные пути распространения волн требуют применения в беспроводных каналах особых способов кодирования и передачи сигналов.

□ Глава 8. Линии связи
□ Глава 9. Кодирование и мультиплексирование данных
□ Глава 10. Беспроводная передача данных
□ Глава 11. Первичные сети
ГЛАВА 8 Линии связи
При построении сетей применяются линии связи, в которых используются различные физические среды: подвешенные в воздухе телефонные и телеграфные провода, проложенные под землей и по дну океана медные коаксиальные и волоконно-оптические кабели, опутывающие все современные офисы медные витые пары, всепроникающие радиоволны.

В этой главе рассматриваются общие характеристики линий связи, не зависящие от их физической природы, такие как полоса пропускания, пропускная способность, помехоустойчивость и достоверность передачи. Ширина полосы пропускания является фундаментальной характеристикой канала связи, так как определяет максимально возможную информационную скорость канала, которая называется пропускной способностью канала. Формула Найквиста выражает эту зависимость для идеального канала, а формула Шеннона учитывает наличие в реальном канале шума. Завершает главу рассмотрение конструкций и стандартов современных кабелей, которые составляют основу проводных линий связи.

Классификация линий связи
Первичные сети, линии и каналы связи
При описании технической системы, которая передает информацию между узлами сети, в литературе можно встретить несколько названий: линия связи, составной канал, канал, звено. Часто эти термины используются как синонимы, и во многих случаях это не вызывает проблем. В то же время есть и специфика в их употреблении.

□ Звено (link) — это сегмент, обеспечивающий передачу данных между двумя соседними узлами сети. То есть звено не содержит промежуточных устройств коммутации и мультиплексирования.
□ Каналом (channel) чаще всего обозначают часть пропускной способности звена, используемую независимо при коммутации. Например, звено первичной сети может состоять из 30 каналов, каждый из которых обладает пропускной способностью 64 Кбит/с.

□ Составной канал (circuit) — это путь между двумя конечными узлами сети. Составной канал образуется отдельными каналами промежуточных звеньев и внутренними соединениями в коммутаторах. Часто эпитет «составной» опускается, и термином «канал» называют как составной канал, так и канал между соседними узлами, то есть в пределах звена.
□ Линия связи может использоваться как синоним для любого из трех остальных терминов.

Не стоит относиться к путанице в терминологии очень строго. Особенно это относится к различиям в терминологии традиционной телефонии и более новой области — компьютерных сетей. Процесс конвергенции только усугубил проблему терминологии, так как многие механизмы этих сетей стали общими, но сохранили за собой по паре (иногда и больше) названий, пришедших из каждой области.
Рис. 8.1. Состав линии связи

Кроме того, существуют объективные причины для неоднозначного понимания терминов. На рис. 8.1 показаны два варианта линии связи. В первом случае (рис. 8.1, с) линия состоит из сегмента кабеля длиной несколько десятков метров и представляет собой звено. Во втором случае (рис. 8.1, б) линия связи представляет собой составной канал, развернутый в сети с коммутацией каналов. Такой сетью может быть первичная сеть или телефонная сеть.

Однако для компьютерной сети эта линия представляет собой звено, так как соединяет два соседних узла, и вся коммутационная промежуточная аппаратура является прозрачной для этих узлов. Повод для взаимного непонимания на уровне терминов компьютерных специалистов и специалистов первичных сетей здесь очевиден.

Первичные сети специально создаются для того, чтобы предоставлять услуги каналов передачи данных для компьютерных и телефонных сетей, про которые в таких случаях говорят, что они работают «поверх» первичных сетей и являются наложенными сетями.
Физическая среда передачи данных
Линии связи отличаются также физической средой, используемой для передачи информации.

Физическая среда передачи данных может представлять собой набор проводников, по которым передаются сигналы. На основе таких проводников строятся проводные (воздушные) или кабельные линии связи (рис. 8.2). В качестве среды также используется земная атмосфера или космическое пространство, через которое распространяются информационные сигналы. В первом случае говорят о проводной среде, а во втором — о беспроводной.
► Подводные (воздушные) линии связи
► Кабельные линии связи (медь)

► Радиоканалы наземнойи спутниковой связи
оооооос? ( Е
3
Витая пара Коаксиал
► Волоконно-оптические линии связи
__Оптоволокно
1 £
Рис. 8.2. Типы сред передачи данных
В современных телекоммуникационных системах информация передается с помощью электрического тока или напряжения, радиосигналов или световых сигналов — все эти физические процессы Представляют собой колебания электромагнитного поля различной частоты.

Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе. Еще в недалеком прошлом такие линии связи были основными для передачи телефонных

или телеграфных сигналов. Сегодня проводные линии связи быстро вытесняются кабельными. Но кое-где они все еще сохранились и при отсутствии других возможностей продолжают использоваться, в частности, и для передачи компьютерных данных. Скоростные качества и помехозащищенность этих линий оставляют желать много лучшего.

Кабельные линии имеют достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической и, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного оборудования. В компьютерных (и телекоммуникационных) сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов — неэкранированная витая пара (Unshielded Twisted Pair, UTP) и экранированная витая пара (Shielded Twisted Pair, STP), коаксиальные кабели с медной жилой, волоконно-оптические кабели. Первые два типа кабелей называют также медными кабелями.

Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое разнообразие типов радиоканалов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны широковещательного радио (длинных, средних и коротких волн), называемые также AM-диапазонами, или диапазонами амплитудной модуляции (Amplitude Modulation, AM), обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, использующие диапазоны очень высоких частот (Very High Frequency, VHF), для которых применяется частотная модуляция (Frequency Modulation, FM). Для передачи данных также используются диапазоны ультравысоких частот (Ultra High Frequency, UHF), называемые еще диапазонами микроволн (свыше 300 МГц). При частоте свыше 30 МГц сигналы уже не отражаются ионосферой Земли, и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому указанные частоты используются в спутниковых или радиорелейных каналах либо в таких локальных или мобильных сетях, в которых это условие выполняется.

В компьютерных сетях сегодня применяются практически все описанные типы физических сред передачи данных. Хорошие возможности предоставляют волоконно-оптические кабели, обладающие широкой полосой пропускания и низкой чувствительностью к помехам. На них сегодня строятся как магистрали крупных территориальных и городских сетей, так и высокоскоростные локальные сети. Популярной средой является также витая пара, которая характеризуется отличным отношением качества к стоимости, а также простотой монтажа. Беспроводные каналы используются чаще всего в тех случаях, когда кабельные линии связи применить нельзя, например при прохождении канала через малонаселенную местность или же для связи с мобильными пользователями сети. Обеспечение мобильности затронуло в первую очередь телефонные сети, компьютерные сети в этом отношении пока отстают. Тем не менее построение компьютерных сетей на основе беспроводных технологий, например Radio Ethernet, считаются сегодня одним из самых перспективных направлений телекоммуникаций. Линии связи на основе беспроводной среды изучаются в главе 10.

Аппаратура передачи данных
Как показано на рис. 8.1, линии связи состоят не только из среды передачи, но и аппаратуры. Даже в том случае, когда линия связи не проходит через первичную сеть, а основана на кабеле, в ее состав входит аппаратура передачи данных.

Аппаратура передачи данных (Data Circuit Equipment, DCE) в компьютерных сетях непосредственно присоединяет компьютеры или коммутаторы к линиям связи и является, таким образом, пограничным оборудованием. Традиционно аппаратуру передачи данных включают в состав линии связи. Примерами DCE являются модемы (для телефонных линий), терминальные адаптеры сетей ISDN, устройства для подключения к цифровым каналам первичных сетей DSU/CSU (Data Service Unit/Circuit Service Unit).

DCE работает на физическом уровне модели OSI, отвечая за передачу информации в физическую среду (в линию) и прием из нее сигналов нужной формы, мощности и частоты. Аппаратура пользователя линии связи, вырабатывающая данные для передачи по линии связи и подключаемая непосредственно к аппаратуре передачи данных, носит обобщенное название оконечное оборудование данных (Data Terminal Equipment, DTE). Примером DTE могут служить компьютеры, коммутаторы и маршрутизаторы. Эту аппаратуру не включают в состав линии связи.

ПРИМЕЧАНИЕ-
Разделение оборудования на DCE и DTE в локальных сетях является достаточно условным. Например, адаптер локальной сети можно считать как принадлежностью компьютера, то есть оборудованием DTE, так и составной частью канала связи, то есть аппаратурой DCE. Точнее, одна часть сетевого адаптера выполняет функции DTE, а его другая, оконечная его часть, непосредственно принимающая и передающая сигналы, относится к DCE.

Для подключения DCE-устройств к DTE-устройствам (то есть к компьютерам или комму-таторам/маршрутизаторам) существует несколько стандартных интерфейсов*. Работают эти устройства на коротких расстояниях друг от друга, как правило, несколько метров.
Промежуточная аппаратура обычно используется на линиях связи большой протяженности. Она решает две основные задачи:
□ улучшение качества сигнала;
□ создание постоянного составного канала связи между двумя абонентами сети.

В локальных сетях промежуточная аппаратура может совсем не использоваться, если протяженность физической среды — кабелей или радиоэфира — позволяет одному сетевому адаптеру принимать сигналы непосредственно от другого сетевого адаптера без дополнительного усиления. В противном случае применяется промежуточная аппаратура, роль которой здесь играют устройства типа повторителей и концентраторов.

В глобальных сетях необходимо обеспечить качественную передачу сигналов на расстояния в сотни и тысячи километров. Поэтому без усилителей (повышающих мощность сигналов) и регенераторов (наряду с повышением мощности восстанавливающих форму импульс-
40
ных сигналов, исказившихся при передаче на большое расстояние), установленных через определенные расстояния, построить территориальную линию связи невозможно.

В первичных сетях помимо упомянутого оборудования, обеспечивающего качественную передачу сигналов, необходима промежуточная коммутационная аппаратура — мультиплексоры (MUX), демультиплексоры и коммутаторы. Эта аппаратура создает между двумя абонентами сети постоянный составной канал из отрезков физической среды — кабелей с усилителями.

В зависимости от типа промежуточной аппаратуры все линии связи делятся на аналоговые и цифровые. В аналоговых линиях промежуточная аппаратура предназначена для усиления аналоговых сигналов, то есть сигналов, которые имеют непрерывный диапазон значений. Такие линии связи традиционно применялись в телефонных сетях с целью связи телефонных коммутаторов между собой. Для создания высокоскоростных каналов, которые мультиплексируют несколько низкоскоростных аналоговых абонентских каналов, при аналоговом подходе обычно используется техника частотного мультиплексирования (Frequency Division Multiplexing, FDM).

В цифровых линиях связи передаваемые сигналы имеют конечное число состояний. Как правило, элементарный сигнал, то есть сигнал, передаваемый за один такт работы передающей аппаратуры, имеет 2,3 или 4 состояния, которые в линиях связи воспроизводятся импульсами или потенциалами прямоугольной формы. С помощью таких сигналов передаются как компьютерные данные, так и оцифрованные речь и изображение (именно благодаря одинаковому способу представления информации современными компьютерными, телефонными и телевизионными сетями стало возможным появление общих для всех первичных сетей). В цифровых линиях связи используется специальная промежуточная аппаратура — регенераторы, которые улучшают форму импульсов и восстанавливают период их следования. Промежуточная аппаратура мультиплексирования и коммутации первичных сетей работает по принципу временного мультиплексирования каналов (Time Division Multiplexing, TDM).

Характеристики линий связи
Спектральный анализ сигналов на линиях связи
Важная роль при определении параметров линий связи отводится спектральному разложению передаваемого по этой линии сигнала. Из теории гармонического анализа известно, что любой периодический процесс можно представить в виде суммы синусоидальных колебаний различных частот и различных амплитуд (рис. 8.3).

Каждая составляющая синусоида называется также гармоникой, а набор всех гармоник называют спектральным разложением, или спектром, исходного сигнала. Под шириной спектра сигнала понруиается разность между максимальной и минимальной частотами того набора синусоид, которые в сумме дают исходный сигнал.

Непериодические сигналы можно представить в виде интеграла синусоидальных сигналов с непрерывным спектром частот. В частности, спектральное разложение идеального импульса (единичной мощности и нулевой длительности) имеет составляющие всего спектра частот, от -«> до +°© (рис. 8.4).
► t> t
IV/I |\У1 IЧЛ 1\У1 WJ |\I I ‘ I I I | I I I |I I Зоо | | +1 | | | | |
► t
Ч Ч Ч Ч Ч чI I
4со

I I +1 I I I I I I II I I I I I I I I I I I I IРис. 8.3. Представление периодического сигнала суммой синусоид
► t
Рис. 8.4. Спектральное разложение идеального импульса
Импульсы на входе
Рис. 8.5. Искажение импульсов в линии связи

Техника нахождения спектра любого исходного сигнала хорошо известна. Для некоторых сигналов, которые описываются аналитически (например, для последовательности прямоугольных импульсов одинаковой длительности и амплитуды), спектр легко вычисляется на основании формул Фурье.

Для сигналов произвольной формы, встречающихся на практике, спектр можно найти с помощью специальных приборов — спектральных анализаторов, которые измеряют спектр реального сигнала и отображают амплитуды составляющих гармоник на экране, распечатывают их на принтере или передают для обработки и хранения в компьютер.

Искажение передающей линией связи синусоиды какой-либо частоты приводит, в конечном счете, к искажению амплитуды и формы передаваемого сигнала любого вида. Искажения формы проявляются в том случае, когда синусоиды различных частот искажаются неодинаково. Если это аналоговый сигнал, передающий речь, то изменяется тембр голоса за счет искажения обертонов — боковых частот. При передаче импульсных сигналов, характерных для компьютерных сетей, искажаются низкочастотные и высокочастотные гармоники, в результате фронты импульсов теряют свою прямоугольную форму (рис. 8.5), и сигналы могут плохо распознаваться на приемном конце линии.

Передаваемые сигналы искажаются из-за несовершенства линий связи. Идеальная передающая среда, не вносящая никаких помех в передаваемый сигнал, должна, по меньшей мере, иметь нулевые значения сопротивления, емкости и индуктивности. Однако на практике медные провода, например, всегда представляют собой некоторую распределенную по длине комбинацию активного сопротивления, емкостной и индуктивной нагрузок (рис. 8.6). В результате синусоиды различных частот передаются этими линиями по-разному.

Рис. 8.6. Представление линии как распределенной индуктивно-емкостной нагрузки

Помимо искажений сигналов, возникающих из-за не идеальных физических параметров линии связи, существуют и внешние помехи, которые вносят свой вклад в искажение формы сигналов на выходе линии. Эти помехи создаются различными электрическими двигателями, электронными устройствами, атмосферными явлениями и т. д. Несмотря на защитные меры, предпринимаемые разработчиками кабелей, и наличие усилительной и коммутирующей аппаратуры, полностью компенсировать влияние внешних помех не удается. Помимо внешних помех в кабеле существуют и внутренние помехи — так называемые наводки одной пары проводников на другую. В результате сигналы на выходе линии связи могут иметь искаженную форму (как это и показано на рис. 8.5).

Затухание и волновое сопротивление

Степень искажения синусоидальных сигналов линиями связи оценивается такими характеристиками, как затухание и полоса пропускания.
Затухание показывает, насколько уменьшается мощность эталонного синусоидального сигнала на выходе линии связи по отношению к мощности сигнала на входе этой линии. Затухание (Л) обычно измеряется в децибелах (дБ) и вычисляется по следующей формуле:
А ^ 10 lg -Pout/Pin*
Здесь Pout — мощность сигнала на выходе линии, Р|
П


Все материалы, размещенные в боте и канале, получены из открытых источников сети Интернет, либо присланы пользователями  бота. 
Все права на тексты книг принадлежат их авторам и владельцам. Тексты книг предоставлены исключительно для ознакомления. Администрация бота не несет ответственности за материалы, расположенные здесь

Report Page