Компьютерные сети

Компьютерные сети

Н. Олифер

Поскольку объем буферов в коммутаторах ограничен, иногда происходит потеря пакетов из-за переполнения буферов при временной перегрузке части сети, когда совпадают
периоды пульсации нескольких информационных потоков. Для сетей с коммутацией пакетов потеря пакетов является обычным явлением, и для компенсации таких потерь в данной сетевой технологии предусмотрен ряд специальных механизмов, которые мы рассмотрим позже.
буфер буфер буфер буфер буфер буфер
Очередипакетов/ N
Приемник

Рис. 3.8. Буферы и очереди пакетов в коммутаторе
-Г^\Сетевые
_ интерфейсы
ша
Пакетный коммутатор может работать на основании одного из трех методов продвижения пакетов:
□ дейтаграммная передача;
□ передача с установлением логического соединения;
□ передача с установлением виртуального канала.
Дейтаграммная передача

Дейтаграммный способ передачи данных основан на том, что все передаваемые пакеты продвигаются (передаются от одного узла сети другому) независимо друг от друга на основании одних и тех же правил.

Процедура обработки пакета определяется только значениями параметров, которые он несет в себе, и текущим состоянием сети (например, в зависимости от ее нагрузки пакет может стоять в очереди на обслуживание большее или меньшее время). Однако никакая информация об уже переданных пакетах сетью не хранится и в ходе обработки очередного пакета во внимание не принимается. То есть каждый отдельный пакет рассматривается сетью как совершенно независимая единица передачи — дейтаграмма.

Решение о продвижении пакета принимается на основе таблицы коммутации
17
, ставящей в соответствие адресам назначения пакетов информацию, однозначно определяющую следующий по маршруту транзитный (или конечный) узел. В качестве такой информации могут выступать идентификаторы интерфейсов данного коммутатора или адреса входных интерфейсов коммутаторов, следующих по маршруту.
Таблица коммутации коммутатора S1
Рис. 3.9. Иллюстрация дейтаграммного принципа передачи пакетов

На рис. 3.9 показана сеть, в которой шесть конечных узлов (М-М5) связаны семью коммутаторами (51-57). Показаны также несколько перемещающихся по разным маршрутам пакетов с разными адресами назначения (М-М5), на пути которых лежит коммутатор 51.

При поступлении каждого из этих пакетов в коммутатор 51 выполняется просмотр соответствующей таблицы коммутации и выбор дальнейшего пути перемещения. Так пакет с адресом N5 будет передан коммутатором 51 на интерфейс, ведущий к коммутатору 56, где в результате подобной процедуры этот пакет будут направлен конечному узлу получателю N5.

В таблице коммутации для одного и того же адреса назначения может содержаться несколько записей, указывающих соответственно на различные адреса следующего коммутатора. Такой подход называется балансом нагрузки и используется для повышения производительности и надежности сети. В примере, показанном на рис. 3.9, пакеты, поступающие в коммутатор 51 для узла назначения с адресом N2, в целях баланса нагрузки распределяются между двумя следующими коммутаторами — 52 и 53, что снижает нагрузку на каждый из них, а значит, сокращает очереди и ускоряет доставку. Некоторая «размытость» путей следования пакетов с одним и тем же адресом назначения через сеть является прямым следствием принципа независимой обработки каждого пакета, присущего дейтаграммному методу. Пакеты, следующие по одному и тому же адресу назначения, могут добираться до него разными путями также вследствие изменения состояния сети, например отказа промежуточных коммутаторов.

Дейтаграммный метод работает быстро, так как никаких предварительных действий перед отправкой данных проводить не требуется. Однако при таком методе трудно проверить факт доставки пакета узлу назначения. Этот метод не гарантирует доставку пакета, он делает это по мере возможности — для описания такого свойства используется термин доставка с максимальными усилиями (best effort).
Передача с установлением логического соединения

Следующий рассматриваемый нами способ продвижения пакетов основывается на знании устройствами сети «истории» обмена данными, например, на запоминании узлом-отправителем числа отправленных, а узлом-получателем — числа полученных пакетов. Такого рода информация фиксируется в рамках логического соединения.

Процедура согласования двумя конечными узлами сети некоторых параметров процесса обмена пакетами называется установлением логического соединения. Параметры, о которых договариваются два взаимодействующих узла, называются параметрами логического соединения.

Наличие логического соединения позволяет более рационально по сравнению с дейтаграммным способом обрабатывать пакеты. Например, при потере нескольких предыдущих пакетов может быть снижена скорость отправки последующих. Или благодаря нумерации пакетов и отслеживанию номеров отправленных и принятых пакетов можно повысить надежность путем отбрасывания дубликатов, упорядочивания поступивших и повторения передачи потерянных пакетов.

Параметры соединения могут быть: постоянными, то есть не изменяющимися в течение всего соединения (например, идентификатор соединения, способ шифрования пакета или максимальный размер поля данных пакета), или переменными, то есть динамически отражающими текущее состояние соединения (например, последовательные номера передаваемых пакетов).

Когда отправитель и получатель фиксируют начало нового соединения, они, прежде всего, «договариваются» о начальных значениях параметров процедуры обмена и только после этого начинают передачу собственно данных.
Передача с установлением соединения более надежна, но требует больше времени для передачи данных и вычислительных затрат от конечных узлов, что иллюстрирует рис. 3.10.
а
Узел 1
Данные
Узел 2
Данные
Запрос на установление соединения
Прием запроса
Подтверждение
на установление

установлениясоединения
соединения
Данные
Квитанции
Запрос на разрыв
подтверждения
соединения
Подтверждениеразрывасоединения
Рис. 3.10. Передача без установления соединения (а) и с установлением соединения (б)
Процедура установления соединения состоит обычно из трех шагов.
1. Узел-инициатор соединения отправляет узлу-получателю служебный пакет с предложением установить соединение.

2. Если узел-получатель согласен с этим, то он посылает в ответ другой служебный пакет, подтверждающий установление соединения и предлагающий некоторые параметры, которые будут использоваться в рамках данного логического соединения. Это могут быть, например, идентификатор соединения, количество кадров, которые можно отправить без получения подтверждения и т. п.

3. Узел-инициатор соединения может закончить процесс установления соединения отправкой третьего служебного пакета, в котором сообщит, что предложенные параметры ему подходят.

Логическое соединение может быть рассчитано на передачу данных как в одном направлении — от инициатора соединения, так и в обоих направлениях. После передачи некоторого законченного набора данных, например определенного файла, узел-отправитель инициирует разрыв данного логического соединения, посылая соответствующий служебный кадр.

Заметим, что, в отличие от передачи дейтаграммного типа, в которой поддерживается только один тип кадра — информационный, передача с установлением соединения должна поддерживать как минимум два типа кадров — информационные кадры переносят собственно пользовательские данные, а служебные предназначаются для установления (разрыва) соединения.

После того как соединение установлено и все параметры согласованы, конечные узлы начинают передачу собственно данных. Пакеты данных обрабатываются коммутаторами точно так же, как и при дейтаграммной передаче: из заголовков пакетов извлекаются адреса назначения и сравниваются с записями в таблицах коммутации, содержащих информацию о следующих шагах по маршруту. Так же как дейтаграммы, пакеты, относящиеся к одному логическому соединению, в некоторых случаях (например, при отказе линии связи) могут доставляться адресату по разным маршрутам.

Однако передача с установлением соединения имеет важное отличие от дейтаграммной передачи, поскольку в ней помимо обработки пакетов на коммутаторах имеет место дополнительная обработка пакетов на конечных узлах. Например, если при установлении соединения была оговорена передача данных в зашифрованном виде, то шифрование пакетов выполняется узлом-отправителем, а расшифровка — узлом-получателем. Аналогично, для обеспечения в рамках логического соединения надежности всю работу по нумерации пакетов, отслеживанию номеров доставленных и недоставленных пакетов, посылки копий и отбрасывания дубликатов берут на себя конечные узлы.

ПРИМЕЧАНИЕ-
Некоторые параметры логического соединения могут рассматриваться еще и как признаки информационного потока между узлами, установившими это логическое соединение.

Механизм установления логических соединений позволяет реализовывать дифференцированное обслуживание информационных потоков. Разное обслуживание могут получить даже потоки, относящиеся к одной и той же паре конечных узлов. Например, пара конечных узлов может установить два параллельно работающих логических соединения, в одном из которых передавать данные в зашифрованном виде, а в другом — открытым текстом.

Как видим, передача с установлением соединения предоставляет больше возможностей в плане надежности и безопасности обмена данными, чем дейтаграммная передача. Однако этот способ более медленный, так как он подразумевает дополнительные вычислительные затраты на установление и поддержание логического соединения.
Передача с установлением виртуального канала

Следующий способ продвижения данных основан на частном случае логического соединения, в число параметров которого входит жестко определенный для всех пакетов маршрут. То есть все пакеты, передаваемые в рамках данного соединения, должны проходить по одному и тому же закрепленному за этим соединением пути.
; рпы
' в сети схоммутацией пакето8, называютширтуаяьнымканалом {virtual circuit йлй virtual channel).

Виртуальные каналы прокладываются для устойчивых информационных потоков. С целью выделения потока данных из общего трафика каждый пакет этого потока помечается специальным видом признака — меткой.

Так же как в сетях с установлением логических соединений, прокладка виртуального канала начинается с отправки из узла-источника специального пакета — запроса на установление соединения. В запросе указываются адрес назначения и метка потока, для которого прокладывается этот виртуальный канал. Запрос, проходя по сети, формирует новую запись в каждом из коммутаторов, расположенных на пути от отправителя до получателя. Запись говорит о том, каким образом коммутатор должен обслуживать пакет, имеющий заданную метку. Образованный виртуальный канал идентифицируется той же меткой

18
.
После прокладки виртуального канала сеть может передавать по нему соответствующий поток данных. Во всех пакетах, которые переносят пользовательские данные, адрес назначения уже не указывается, его роль играет метка виртуального канала. При поступлении пакета на входной интерфейс коммутатор читает значение метки из заголовка пришедшего пакета и просматривает свою таблицу коммутации, по которой определяет, на какой выходной порт передать пришедший пакет.
Таблица коммутации коммутатора S1

Рис. 3.11. Иллюстрация принципа работы виртуального канала

На рис. 3.11 показана сеть, в которой проложены два виртуальных канала (Virtual Channel, VC), идентифицируемых метками VC1 и VC2. Первый проходит от конечного узла с адресом М до конечного узла с адресом N2 через промежуточные коммутаторы 51 и 52. Второй виртуальный канал VC2 обеспечивает продвижение данных по пути M-51-53-55-JV3. В общем случае, между двумя конечными узлами может быть проложено несколько виртуальных каналов, например еще один виртуальный канал между узлами М и N2 мог бы проходить через промежуточный коммутатор 53. На рисунке показаны два пакета, несущие в своих заголовках метки потоков VC1 и VC2, которые играют роль адресов назначения.

Таблица коммутации в сетях, использующих виртуальные каналы, отличается от таблицы коммутации в дейтаграммных сетях. Она содержит записи только о проходящих через коммутатор виртуальных каналах, а не обо всех возможных адресах назначения, как это имеет место в сетях с дейтаграммным алгоритмом продвижения. Обычно в крупной сети количество проложенных через узел виртуальных каналов существенно меньше общего количества узлов, поэтому и таблицы коммутации в этом случае намного короче, а следовательно, анализ такой таблицы занимает у коммутатора меньше времени. По той же причине метка короче адреса конечного узла, и заголовок пакета в сетях с виртуальными каналами переносит по сети вместо длинного адреса компактный идентификатор потока.

ПРИМЕЧАНИЕ-
Использование в сетях техники виртуальных каналов не делает их сетями с коммутацией каналов. Хотя в подобных сетях применяется процедура предварительного установления канала, этот канал виртуальным, то есть по нему передаются отдельные пакеты, а не потоки информации с постоянной скоростью, как в сетях с коммутацией каналов.

В одной и той же сетевой технологии могут быть задействованы разные способы продвижения данных. Так, дейтаграммный протокол IP используется для передачи данных между отдельными сетями, составляющими Интернет. В то же время обеспечением надежной доставки данных между конечными узлами этой сети занимается протокол TCP, устанавливающий логические соединения без фиксации маршрута. И наконец, Интернет — это пример сети, применяющей технику виртуальных каналов, так как в состав Интернета входит немало сетей АТМ и Frame Relay, поддерживающих виртуальные каналы.

Сравнение сетей с коммутацией пакетов и каналов
Прежде чем проводить техническое сравнение сетей с коммутацией пакетов и сетей лшшутацией каналов, проведем их неформальное сравнение на основе, как нам кажется, весьма продуктивной транспортной аналогии.
Транспортная аналогия для сетей с коммутацией пакетов и каналов
Для начала убедимся, что движение на дорогах имеет много общего с перемещением пакетов в сети с коммутацией пакетов.

Пусть автомобили в этой аналогии соответствуют пакетам, дороги — каналам связи, а перекрестки — коммутаторам. Подобно пакетам, автомобили перемещаются независимо друг от друга, разделяя пропускную способность дорог и создавая препятствия друг другу. Слишком интенсивный трафик, не соответствующий пропускной способности дороги, приводит к перегруженности дорог, в результате автомобили стоят в пробках, что соответствует очередям пакетов в коммутаторах.

На перекрестках происходит «коммутация» потоков автомобилей, каждый из автомобилей выбирает подходящее направление перекрестка, чтобы попасть в пункт назначения. Конечно, перекресток играет намного более пассивную роль по сравнению с коммутатором пакетов. Его активное участие в обработке трафика можно заметить только на регулируемых перекрестках, где светофор определяет очередность пересечения перекрестка потоками автомобилей. Еще активней, естественно, поведение регулировщика трафика, который может выбрать для продвижения не только поток автомобилей в целом, но и отдельный автомобиль.

Как и в сетях с коммутацией пакетов, к образованию заторов на дорогах приводит неравномерность движения автомобилей. Так, даже кратковременное снижение скорости одного автомобиля на узкой дороге может создать большую пробку, которой бы не было, если бы все автомобили всегда двигались с одной и той же скоростью и равными интервалами.
А теперь попробуем найти общее в автомобильном движении и в сетях с коммутацией каналов.

Иногда на дороге возникает ситуация, когда нужно обеспечить особые условия для движения колонны автомобилей. Например, представим, что очень длинная колонна автобусов перевозит детей из города в летний лагерь по многополосному шоссе. Для того чтобы колонна двигалась без препятствий, заранее для ее движения разрабатывается маршрут.

Затем на протяжении всего этого маршрута, который пересекает несколько перекрестков, для колонны выделяется отдельная полоса на всех отрезках шоссе. При этом полоса освобождается от другого трафика еще за некоторое время до начала движения колонны, и это резервирование отменяется только после того, как колонна достигает пункта назначения.

Во время движения все автомобили колонны едут с одинаковой скоростью и приблизительно равными интервалами между собой, не создавая препятствий друг другу. Очевидно, что для колонны автомобилей создаются наиболее благоприятные условия движения, но при этом автомобили теряют свою самостоятельность, превращаясь в поток, из которого нельзя «свернуть» в сторону. Дорога при такой организации движения используется не рационально, так как полоса простаивает значительную часть времени, как и полоса пропускания в сетях с коммутацией каналов.

Количественное сравнение задержек
Вернемся от автомобилей к сетевому трафику. Пусть пользователю сети необходимо передать достаточно неравномерный трафик, состоящий из периодов активности и пауз. Представим также, что он может выбрать, через какую сеть, с коммутацией каналов или пакетов, передавать свой трафик, причем в обеих сетях производительность каналов связи

одинаковы. Очевидно, что более эффективной с точки зрения временных затрат для нашего пользователя была бы работа в сети с коммутацией каналов, где ему в единоличное владение предоставляется зарезервированный канал связи. При этом способе все данные поступали бы адресату без задержки. Тот факт, что значительную часть времени зарезервированный канал будет простаивать (во время пауз), нашего пользователя не волнует — ему важно быстро решить собственную задачу.

Если бы пользователь обратился к услугам сети с коммутацией пакетов, то процесс передачи данных оказался бы более медленным, так как его пакеты, вероятно, не раз задерживались бы в очередях, ожидая освобождения необходимых сетевых ресурсов наравне с пакетами других абонентов.

Давайте рассмотрим более детально механизм возникновения задержек при передаче данных в сетях обоих типов. Пусть от конечного узла М отправляется сообщение к конечному узлу N2 (рис. 3.12). На пути передачи данных расположены два коммутатора.
L
Рис. 3.12. Временная диаграмма передачи сообщения в сети с коммутацией каналов

В сети с коммутацией каналов данные после задержки, связанной с установлением канала, начинают передаваться на стандартной для канала скорости. Время доставки данных Т адресату равно сумме времени распространения сигнала в канале t
pTg
и времени передачи сообщения в канал (называемое также временем сериализации) t
tms
.
Наличие коммутаторов в сети с коммутацией каналов никак не влияет на суммарное время прохождения данных через сеть.
ПРИМЕЧАНИЕ-

Заметим, что время передачи сообщения в канал в точности совпадает со временем приема сообщения из канала в буфер узла назначения, то есть временем буферизации.
Время распространения сигнала зависит от расстояния между абонентами L и скорости S распространения электромагнитных волн в конкретной физической среде, которая колеблется от 0,6 до 0,9 скорости света в вакууме:
£prg
=
L/ S.

Время передачи сообщения в канал (а значит, и время буферизации в узле назначения) равно отношению объема сообщения V в битах к пропускной способности канала С в битах в секунду:
^tma ” V/ С,

В сети с коммутацией пакетов передача данных не требует обязательного установления соединения. Предположим, что в сеть, показанную на рис. 3.13, передается сообщение того же объема V, что и в предыдущем случае (см. рис. 3.12), однако оно разделено на пакеты, каждый из которых снабжен заголовком. Пакеты передаются от узла N1 узлу N2, между которыми расположены два коммутатора. На каждом коммутаторе каждый пакет изображен дважды: в момент прихода на входной интерфейс и в момент передачи в сеть с выходного интерфейса. Из рисунка видно, что коммутатор задерживает пакет на некоторое время. Здесь Т\ — время доставки адресату первого пакета сообщения, а Г

р8
— всего сообщения.
Рис. 3.13. Временная диаграмма передачи сообщения, разделенного на пакеты, в сети с коммутацией пакетов
Сравнивая временные диаграммы передачи данных в сетях с коммутацией каналов и пакетов, отметим два факта:
□ значения времени распространения сигнала (t
prg
) в одинаковой физической среде на одно и то же расстояние одинаковы;
□ учитыва-я, что значения пропускной способности каналов в обеих сетях одинаковы, значения времени передачи сообщения в канал (£
t


Все материалы, размещенные в боте и канале, получены из открытых источников сети Интернет, либо присланы пользователями  бота. 
Все права на тексты книг принадлежат их авторам и владельцам. Тексты книг предоставлены исключительно для ознакомления. Администрация бота не несет ответственности за материалы, расположенные здесь

Report Page