Нові матеріали інструментів

Нові матеріали інструментів


Введение

История развития обработки металлов показывает, что одним из эффективных путей повышения производительности труда в машиностроении является применение новых инструментальных материалов. Например, применение быстрорежущей стали вместо углеродистой инструментальной, позволило увеличить скорость резания в 2...3 раза. Это потребовало существенно усовершенствовать конструкцию металлорежущих станков, прежде всего, увеличить их быстроходность и мощность. Аналогичное явление наблюдалось также при использовании в качестве инструментального материала твердых сплавов.

Инструментальный материал должен иметь высокую твердость, чтобы в течение длительного времени срезать стружку. Значительное превышение твердости инструментального материала по сравнению с твердостью обрабатываемой заготовки должно сохраняться и при нагреве инструмента в процессе резания. Способность материала инструмента сохранять свою твердость при высокой температуре нагрева определяет его красностойкость (теплостойкость). Режущая часть инструмента должна обладать большой износостойкостью в условиях высоких давлений и температур.

Важным требованием является также достаточно высокая прочность инструментального материала, так как при недостаточной прочности происходит выкрашивание режущих кромок либо поломка инструмента, особенно при их небольших размерах.

Инструментальные материалы должны обладать хорошими технологическими свойствами, т.е. легко обрабатываться в процессе изготовления инструмента и его переточек, а также быть сравнительно дешевыми.

Инструментальные материалы, используемые для изготовления режущего инструмента, в настоящее время, представлены на рисунке 1.


Рис.1. Классификация современных инструментальных материалов

Рассмотрим вышеперечисленные инструментальные материалы подробнее.

Инструментальные стали

Режущие инструменты, изготовленные из углеродистых инструментальных сталей У10А, У11А, У12А, У13А, обладают достаточной твердостью, прочностью и износостойкостью при комнатной температуре, однако теплостойкость их невелика. При температуре 200…250º С их твердость резко уменьшается. Поэтому они применяются для изготовления ручных и машинных инструментов, предназначенных для обработки мягких металлов с низкими скоростями резания, таких, как напильники, мелкие сверла, развертки, метчики, плашки и др. Углеродистые инструментальные стали имеют низкую твердость в состоянии поставки, что обеспечивает их хорошую обрабатываемость резанием и давлением. Однако они требуют применения при закалке резких закалочных сред, что усиливает коробление инструментов и опасность образования трещин.

Инструменты из углеродистых инструментальных сталей плохо шлифуются из-за сильного нагревания, отпуска и потери твердости режущих кромок. Из-за больших деформаций при термической обработке и плохой шлифуемости углеродистые инструментальные стали не используются при изготовлении фасонных инструментов, подлежащих шлифованию по профилю.

С целью улучшения свойств углеродистых инструментальных сталей были разработаны низколегированные стали. Они обладают большей прокаливаемостью и закаливаемостью, меньшей чувствительностью к перегреву, чем углеродистые стали, и в то же время хорошо обрабатываются резанием и давлением. Применение низколегированных сталей уменьшает количество бракованных инструментов.

Область применения низколегированных сталей та же, что и для углеродистых сталей.

По теплостойкости легированные инструментальные стали незначительно превосходят углеродистые. Они сохраняют высокую твердость при нагреве до 200…260° С и поэтому непригодны для резания с повышенной скоростью, а также для обработки твердых материалов.

Низколегированные инструментальные стали подразделяются на стали неглубокой и глубокой прокаливаемости. Для изготовления режущих инструментов используются стали 11ХФ, 13Х, ХВ4, В2Ф неглубокой прокаливаемости и стали X, 9ХС, ХВГ, ХВСГ глубокой прокаливаемости.

В настоящее время для изготовления металлорежущих инструментов применяются, быстрорежущие стали. В зависимости от назначения их можно разделить на две группы:

1) стали нормальной производительности;

2) стали повышенной производительности.

К сталям первой группы относятся Р18, Р12, Р9, Р6МЗ, Р6М5, к сталям второй группы – Р6М5ФЗ, Р12ФЗ, Р18Ф2К5, Р10Ф5К5, Р9К5, Р9К10, Р9МЧК8, Р6М5К5 и др.

Высокие режущие свойства быстрорежущей стали обеспечиваются за счет легирования сильными карбидообразующими элементами: вольфрамом, молибденом, ванадием и некарбидообразующим кобальтом, также они содержат хром. Существенным недостатком этих сталей является значительная карбидная неоднородность, особенно в прутках большого сечения.

С увеличением карбидной неоднородности прочность стали, снижается, при работе выкрашиваются режущие кромки инструмента, и снижается его стойкость.

Карбидная неоднородность выражена сильнее в сталях с повышенным содержанием вольфрама, ванадия, кобальта. В сталях с молибденом карбидная неоднородность проявляется в меньшей степени.

Быстрорежущая сталь Р18, содержащая 18% вольфрама, долгое время была наиболее распространенной. Инструменты, изготовленные из этой стали, после термической обработки имеют твердость 63…66 HRСЭ, красностойкость 600 °С и достаточно высокую прочность. Сталь Р18 сравнительно хорошо шлифуется.

Большое количество избыточной карбидной фазы делает сталь Р18 более мелкозернистой, менее чувствительной к перегреву при закалке, более износостойкой.

Ввиду высокого содержания вольфрама сталь Р18 целесообразно использовать только для изготовления инструментов высокой точности, когда стали других марок нецелесообразно применять из-за прижогов режущей части при шлифовании и заточке. К вольфрамовым относятся также Р12, Р9, которые имеют схожие с Р18 свойства и области применения.

С целью экономии дорогостоящего вольфрама были разработаны стали, в которых часть вольфрама заменена на молибден, такие как Р6МЗ, Р6М5. Введение молибдена привело к значительному повышению как прочности, так и стойкости инструмента. Молибден обусловливает меньшую карбидную неоднородность, чем вольфрам. Поэтому замена 6...10 % вольфрама соответствующим количеством молибдена снижает карбидную неоднородность быстрорежущих сталей примерно на 2 балла и соответственно повышает пластичность. Недостаток молибденовых сталей заключается в том, что они имеют повышенную чувствительность к обезуглероживанию.

Вольфрамомолибденовые стали рекомендуется применять в промышленности наряду с вольфрамовыми для изготовления инструмента, работающего в тяжелых условиях, когда необходима повышенная износостойкость, пониженная карбидная неоднородность и высокая прочность.

Среди быстрорежущих сталей нормальной производительности доминирующее положение заняла сталь Р6М5. Ее применяют для изготовления всех видов режущих инструментов. Инструменты из стали Р6М5 имеют стойкость, равную или до 20 % более высокую, чем стойкость инструментов из стали Р18.

Быстрорежущие стали повышенной производительности используются в основном при обработке жаропрочных сплавов, высокопрочных и нержавеющих сталей, других труднообрабатываемых материалов и конструкционных сталей с повышенными режимами резания. В настоящее время применяются кобальтовые и ванадиевые быстрорежущие стали.

По сравнению со сталями нормальной производительности ысокованадиевыев стали повышенной производительности обладают в основном более высокой износостойкостью, а стали, содержащие кобальт, более высокой красностойкостью и теплопроводностью. Вместе с тем быстрорежущие стали повышенной производительности, содержащие кобальт, имеют повышенную чувствительность к обезуглероживанию. Быстрорежущие стали повышенной производительности шлифуются хуже стали Р18 и требуют более точного соблюдения температур нагрева при термической обработке. Ухудшение шлифуемости выражается в повышении износа абразивных кругов и увеличении толщины поверхностного слоя стали, повреждаемого при излишне жестком режиме шлифования.

Быстрорежущие стали повышенной производительности из-за технологичских, недостатков не являются сталями универсального назначения. Они имеют относительно узкие границы применения, более пригодны для инструментов, подвергаемых незначительному профильному шлифованию.

Основной маркой быстрорежущей стали повышенной производительности является сталь Р6М5К5. Она применяется для изготовления различных инструментов, предназначенных для обработки конструкционных сталей на повышенных режимах резания, а также нержавеющих сталей и жаропрочных сплавов.

Перспективным способом получения быстрорежущих сталей является метод порошковой металлургии. Главной отличительной особенностью порошковых сталей является равномерное распределение карбидов по сечению, которое не превышает первого балла шкалы карбидной неоднородности ГОСТ 19265–73. В определенных условиях, как показывают эксперименты, стон-кость режущих инструментов из порошковых сталей в 1,2...2,0 раза выше стойкости инструментов, изготовленных из сталей обычного производства. Наиболее рационально порошковые стали использовать при обработке труднообрабатываемых сложнолегированных материалов и материалов, имеющих повышенную твердость (НRСэ≥32), а также для изготовления крупногабаритных инструментов диаметром более 80 мм.

Проводятся работы по созданию и уточнению области целесообразного применения быстрорежущих сплавов дисперсионного твердения типа Р18М7К25, Р18МЗК25, Р10М5К25. В отличие от быстрорежущих сталей, рассматриваемые сплавы упрочняются вследствие выделения при отпуске интерметаллидов, имеют более высокую красностойкость (700-720 °С) и твердость (68-69 НRСЭ). Высокая теплостойкость у них сочетается с удовлетворительной прочностью, что обусловливает повышенные режущие свойства этих сплавов. Эти сплавы дорогостоящие, и применение их целесообразно лишь при резании труднообрабатываемых материалов.

Твёрдые сплавы

В настоящее время для производства режущих инструментов широко используются твердые сплавы. Они состоят из карбидов вольфрама, титана, тантала, сцементированных небольшим количеством кобальта. Карбиды вольфрама, титана и тантала обладают высокой твердостью, износостойкостью. Инструменты, оснащенные твердым сплавом, хорошо сопротивляются истиранию сходящей стружкой и материалом заготовки и не теряют своих режущих свойств при температуре нагрева до 750…1100 °С.

Установлено что твердосплавным инструментом, имеющим в своем составе килограмм вольфрама, можно обработать в 5 раз больше материала, чем инструментом из быстрорежущей стали с тем же содержанием вольфрама.

Недостатком твердых сплавов, по сравнению с быстрорежущей сталью, является их повышенная хрупкость, которая возрастает с уменьшением содержания кобальта в сплаве. Скорости резания инструментами, оснащенными твердыми сплавами, в 3…4 раза превосходят скорости резания инструментами из быстрорежущей стали. Твердосплавные инструменты пригодны для обработки закаленных сталей и таких неметаллических материалов, как стекло, фарфор и т. п.

Производство металлокерамических твердых сплавов относится к области порошковой металлургии. Порошки карбидов смешивают с порошком кобальта. Из этой смеси прессуют изделия требуемой формы и затем подвергают спеканию при температуре, близкой к температуре плавления кобальта. Так изготовляют пластинки твердого сплава различных размеров и форм, которыми оснащаются резцы, фрезы, сверла, зенкеры, развертки и др.

Пластинки твердого сплава крепят к державке или корпусу напайкой или механически при помощи винтов и прижимов. Наряду с этим в машиностроительной промышленности применяют мелкоразмерные, монолитные твердосплавные инструменты, состоящие из твердых сплавов. Их изготовляют из пластифицированных заготовок. В качестве пластификатора в порошок твердого сплава вводят парафин до 7…9 %. Из пластифицированных сплавов прессуют простые по форме заготовки, которые легко обрабатываются обычным режущим инструментом. После механической обработки заготовки спекают, а затем шлифуют и затачивают. По такой технологии изготовляют мелкие сверла, зенкеры, развертки и т. п.

Монолитный твердосплавный инструмент может также изготовляться из окончательно спеченных твердосплавных цилиндрических заготовок с последующим вышлифовыванием профиля алмазными кругами.

В зависимости от химического состава металлокерамические твердые сплавы, применяемые для производства режущего инструмента, разделяются на три основные группы.

Сплавы первой группы изготовляют на основе карбидов вольфрама и кобальта. Они носят название вольфрамокобальтовых. Это сплавы группы ВК. К ним относятся сплавы: ВКЗ, ВК4, ВК6, ВК8, ВК10, ВК15.

Рассматриваемые сплавы применяются для обработки чугуна, цветных металлов и неметаллических материалов. При выборе марки твердого сплава учитывают содержание кобальта, которое предопределяет его прочность. При работе с ударами и вибрациями выбирают сплавы с большим содержанием кобальта ВК15, ВК10, ВК8, для более лёгких условий резания – сплавы ВК2, ВКЗ.

Ко второй группе относятся сплавы, получаемые на основе карбидов вольфрама и титана и связующего металла кобальта. Это двухкарбидные титано-вольфрамокобальтовые сплавы группы ТК (Т30К4, Т15К6, Т14К8, Т5К10, Т5К12), обладающие большей износостойкостью по сравнению со сплавами группы ВК.

Третья группа сплавов состоит из карбидов вольфрама, титана, тантала и кобальта. Это трехкарбидные титано-танталовольфрамокобальтовые сплавы группы ТТК: ТТ7К12, ТТ8К6, ТТ10К8Б, ТТ20К9. Введение в состав сплавов карбидов тантала значительно повышает их прочность, но снижает красностойкость.

Все марки твердых сплавов разбиты по международной классификации (ИСО) на группы: К, М и Р. Сплавы группы К предназначены для обработки чугуна и цветных металлов, дающих стружку надлома. Сплавы группы М – для труднообрабатываемых материалов, сплавы группы Р – для обработки сталей.

С целью экономии дефицитного вольфрама разрабатываются безвольфрамовые металлокерамические твердые сплавы на основе карбидов, а также карбидонитридов переходных металлов, в первую очередь титана, ванадия, ниобия, тантала. Эти сплавы изготовляют на никелемолибденовой связке. Полученные твердые сплавы на основе карбидов по своим характеристикам примерно равноценны стандартным сплавам группы ТК. В настоящее время промышленностью освоены безвольфрамовые сплавы ТН-20, ТМ-3, КНТ-16 и др. Эти сплавы обладают высокой окалиностойкостью, низким коэффициентом трения, меньшим по сравнению с вольфрамсодержащими сплавами удельным весом, но имеют, как правило, более низкую прочность, склонность к разрушению при повышенных температурах. Изучение физико-механических и эксплуатационных свойств безвольфрамовых твердых сплавов показало, что они успешно могут быть использованы для чистовой и получистовой обработки конструкционных сталей и цветных сплавов, но значительно уступают сплавам группы ВК при обработке титановых и нержавеющих сталей.

Одним из путей повышения эксплуатационных характеристик твердых сплавов является нанесение на режущую часть инструмента тонких износостойких покрытий на основе нитрида титана, карбида титана, нитрида молибдена, окиси алюминия. Толщина наносимого слоя покрытия колеблется от 0,005 до 0,2 мм. Опыты показывают, что тонкие износостойкие покрытия приводят к значительному росту стойкости инструмента.

Минералокерамика

Минералокерамические материалы для изготовления режущих инструментов стали применять с 50-х годов.

Минералокерамика – это инструментальный материал основой, которого является корунд – минерал кристаллического строения, состоящий из оксида алюминия Аl2О3.

Наибольшее распространение в настоящее время получила керамика оксидного (белая), оксидно-карбидного (черная), оксидно-нитридная.

Оксидная керамика содержит до 99% Аl2О3. Белые минералокерамические пластинки выпускаются под маркой ЦМ332 (σи=0,3...0,4 ГПа). Она имеет теплостойкость порядка 1500 °С, что позволяет обрабатывать металлы со скоростями резания 300...600 м/мин.

Сейчас освоены новые марки оксидной керамики с улучшенными физико-механическими свойствами, такие, как В013 (σи=40…50 кгс/мм2), ВШ-75 (σи =56…60 кгс/мм2) и др.

Оксидную керамику рекомендуется использовать для чистового и получистового точения нетермообработанных сталей, а также серых и ковких чугунов с твердостью НВ 200 и менее.

Оксидно-карбиднуюкерамику получают добавлением к ее основе (Аl2Оз) карбидов тугоплавких металлов (вольфрама, титана и молибдена). Образовавшиеся составы из кристаллов корунда и карбидов тугоплавких металлов получили название керметы (σи = 0,6...0,7 ГПа). Теплостойкость керметов до 1100…1200°С. Керметы изготовляются промышленностью в виде многогранных и круглых пластинок. Они имеют марки ВОК-60, ВОК-63 и ВЗ.

Инструмент с пластинами из минералокерамики используется при получистовом и чистовом точении и растачивании заготовок (из высокопрочных и отбеленных чугунов, из закаленных и труднообрабатываемых сталей, некоторых цветных металлов и их сплавов, а также неметаллических материалов) с высокими скоростями резания в условиях безударной обработки и без охлаждения.

Оксидно-нитридная – инструментальный материал картинит ОНТ-20, состоит из Аl2О3 и TiN. Картинит предназначен для чистового и получистового точения и фрезерования сталей, закаленных до HRC< 55.

Сверхтвёрдые материалы

Для изготовления лезвийного инструмента в настоящее время применяются сверхтвердые материалы (СТМ): природные алмазы, поликристаллические синтетические алмазы и композиты на основе кубического нитрида бора.

Природные и синтетические алмазы обладают самой высокой твердостью (HV 10000 кгс/мм2), малыми коэффициентами линейного расширения и трения и высокой теплопроводностью, адгезионной стойкостью и износостойкостью. Недостатки алмазов – невысокая прочность на изгиб, хрупкость и растворимость в железе при относительно низких температурах (750°С), что препятствует использованию их для обработки железоуглеродистых сталей и сплавов на высоких скоростях резания, а также при прерывистом резании и вибрациях. Теплостойкость алмаза около 800° С.

Природные алмазы используются в виде кристаллов, закрепляемых в металлическом корпусе резца.

По твердости синтетические поликристаллы лишь незначительно уступают природным монокристаллам алмаза.

Синтетические алмазы маркируются буквами АС. Например: марки АСБ (баллас) и АСПК (карбонадо). Большие скорости резания 1000...1200 м/мин обеспечивают высокую производительность обработки. Их можно использовать не только для точения, но и для фрезерования. Синтетические алмазы менее чувствительны к динамическим нагрузкам и позволяют вести обработку с большим сечением среза (глубиной и подачей).

Природные и синтетические алмазы нашли широкое применение в обработке медных, алюминиевых и магниевых сплавов баббитов, благородных металлов (золота, серебра, палладия, платины), титана и его сплавов, неметаллических материалов (пластмасс, текстолита, стеклотекстолита, органического стекла, прессованного и силицированного графита), а также твердых сплавов и керамики.

Кубический нитрид бора (КНБ) химический состав: 44% бора и 56% азота. По твердости КНБ близок к твердости алмаза, а по теплостойкости (1500° С) значительно превосходит все инструментальные материалы. инертен к железу и углеродистым сплавам. Для изготовления лезвийных инструментов используются поликристаллы КНБ и композиционные материалы, созданные на его основе (композиты). К ним относятся: Эльбор-Р (композит 01), белбор (композит 02), композит 05, ПТНБ (композит 09), гексанит-Р (композит 10), композит 10Д, композит 12. Они синтезируются в виде цилиндрических столбиков диаметром 4...8 мм, высотой 3...6 мм, которыми затем оснащаются режущие инструменты.

Композиты на базе кубического нитрида бора используют для обработки сталей и чугунов различной твердости. Причем чем выше твердость стали или чугуна, а также скорость резания, тем значительнее преимущество инструментов из композита по сравнению с инструментами из твердого сплава и минералокерамики. При этом обеспечиваются 5...6-й квалитеты точности и шероховатость поверхности Ra =0,16...0,08 мкм, что позволяет во многих случаях заменить операции внутреннего и наружного шлифования.

Новый СТМ – силинит-Р – инструментальный материал на основе нитрида кремния (SiN), обладает σи = 49…68 кгс/мм2 и большой твердостью HRA 94…96, стабильностью свойств при высокой температуре. Теплостойкость достигает 1600° С. Для силинита-Р характерно отсутствие адгезии с большинством сталей и сплавов на основе алюминия и меди. Из этого материала изготавливают как напайные, так и неперетачиваемые механически закрепляемые пластины. Используют для выполнения операций получистового и чистового точения различных материалов. При обработке закаленных сталей его применение может заменить шлифование.

Заключение

За последние десятилетия объем различных типов инструментальных материалов для лезвийного инструмента, потребляемых металообрабатывающими производствами технологически развитых стран, сильно изменился. Практически не используются для лезвийного инструмента углеродистые и легированные инструментальные стали. Заметно снизилось потребление быстрорежущих сталей с 65...70% до 35...40%, в то время как, объёмы использования твёрдых сплавов увеличились с 30 до 55%, а режущей керамики и сверхтвёрдых инструментальных материалов с 1% до 10%.

Существенно увеличивается доля использования относительно недорогих керметов (безвольфрамовых твердых сплавов), которые в ряде случаев не уступают, а иногда и превосходят по эксплуатационным характеристикам традиционные вольфрамсодержащие твердые сплавы.

Из режущих керамик наиболее перспективными являются керамики, упрочненные нитевидными кристаллами нитрида кремния и сиалоны. Из сверхтвердых материалов следует отметить появление поликристаллических алмазных лезвийных инструментов нового типа, изготавливаемых по технологии химического парофазного осаждения (CVD-diamond).

С сожалением приходится констатировать, что отечественная инструментальная промышленность утеряла лидирующее положение в области создания новых инструментальных материалов. Помимо этого, многие марки инструментальных материалов, положительно зарекомендовавшие себя в практическом использовании, в настоящее время выпускаться перестали. Особенно это заметно в области производства режущей керамики и схверхтвердых инструментальных материалов.


Report Page