Cosmos

Cosmos


VII. El espinazo de la noche

Página 16 de 34

Antigua moneda de Samos del siglo tercero a. de C. con una representación de Pitágoras y la leyenda griega «Pitágoras de Samos». (Reproducido por cortesía de los administradores del Museo Británico).

Él o sus discípulos descubrieron el teorema de Pitágoras: la suma de los cuadrados de los lados más cortos de un triángulo recto es igual al cuadrado del lado más largo. Pitágoras no se limitó a enumerar ejemplos de este teorema; desarrolló un método de deducción matemática para demostrarlo de modo general. La moderna tradición de la argumentación matemática, esencial para toda la ciencia, le debe mucho a Pitágoras. Fue el primero en utilizar la palabra Cosmos para indicar un universo bien ordenado y armonioso, un mundo capaz de ser entendido por el hombre.

Muchos jonios creían que la armonía subyacente del universo era accesible a la observación y al experimento, método este que domina la ciencia actual. Sin embargo, Pitágoras empleó un método muy distinto. Enseñó que las leyes de la naturaleza podían deducirse por el puro pensamiento. El y sus seguidores no fueron fundamentalmente experimentalistas.[49] Eran matemáticos. Y eran místicos convencidos. Según dice Bertrand Russell en un pasaje quizás poco caritativo, Pitágoras «fundó una religión, los principios más importantes de la cual eran la transmigración de las almas y lo pecaminoso que es comer judías. Su religión estaba encarnada en una orden religiosa, que en algunas ocasiones consiguió el control del Estado y fundó un gobierno de santos. Pero quienes no querían regenerarse anhelaban las judías y más tarde o más temprano se rebelaron».

Los pitagóricos se deleitaban con la certeza de la demostración matemática, la sensación de un mundo puro e incontaminado accesible al intelecto humano, un Cosmos en el cual los lados de triángulos rectángulos obedecen de modo perfecto a relaciones matemáticas simples.

Esto contrastaba de modo acentuado con la desordenada realidad del mundo de cada día. Creían haber vislumbrado en sus matemáticas una realidad perfecta, un reino de los dioses, del cual nuestro mundo familiar es sólo un reflejo imperfecto. En la famosa parábola de la caverna Platón imaginó unos prisioneros amarrados que sólo veían las sombras de los pasantes y que creían que estas sombras eran reales, sin llegar nunca a suponer la compleja realidad que descubrirían con sólo girar la cabeza. Los pitagóricos iban a influir intensamente a Platón y más tarde a la cristiandad.

Ellos no defendían la libre confrontación de puntos de vista contrarios, sino que al igual que todas las religiones ortodoxas practicaban una rigidez que les impedía corregir sus errores. Cicerón escribió:

En la discusión lo que debe exigirse no es tanto el peso de la autoridad como la fuerza de los argumentos. De hecho, la autoridad de quienes profesan la enseñanza es a menudo un obstáculo positivo para quienes desean aprender; para saldar la cuestión, dejan de utilizar su propio juicio y aceptan lo que consideran como el veredicto del maestro escogido. En realidad no me siento en disposición de aceptar la práctica atribuida tradicionalmente a los pitagóricos, quienes preguntados sobre los fundamentos de cualquier afirmación que hacían en un debate se dice que solían responder: «El Maestro lo dijo», donde «el Maestro es Pitágoras». Tan poderosa era una opinión ya decidida, que hacía prevalecer una autoridad carente del apoyo de la razón.

Los pitagóricos estaban fascinados por los sólidos regulares, objetos tridimensionales simétricos con caras que son todas un solo polígono regular. El cubo es el ejemplo más sencillo, porque tiene por lados a seis cuadrados. Hay un número infinito de polígonos regulares, pero sólo hay cinco sólidos regulares. (La demostración de esta afirmación, que constituye un ejemplo famoso de razonamiento matemático, se da en el apéndice l.) Resulta que por algún motivo el conocimiento de un sólido llamado dodecaedro, que tiene por lados a doce pentágonos, pareció peligroso a los pitagóricos. El sólido estaba relacionado místicamente con el Cosmos. Los cuatro sólidos regulares restantes fueron identificados de algún modo con los cuatro «elementos» que en aquel entonces se suponía que constituían el mundo: tierra, fuego, aire y agua. Pensaron pues que el quinto sólido regular sólo podía corresponder a la sustancia de los cuerpos celestiales (este concepto de una quinta esencia ha dado origen a la palabra quintaesencia). Había que ocultar a las personas vulgares la existencia del dodecaedro.

Los pitagóricos, enamorados de los números enteros, creyeron que todas las cosas podían derivarse de ellos, empezando por todos los demás números. Se produjo una crisis en esta doctrina cuando descubrieron que la raíz cuadrada de dos (la razón entre la diagonal y el lado de un cuadrado) era irracional, es decir que √2 no puede expresarse de modo preciso como la razón de dos números enteros determinados, por grandes que fueran estos números. Este descubrimiento (reproducido en el apéndice 1) se llevó a cabo utilizando irónicamente como herramienta el teorema de Pitágoras. Irracional significaba en principio que un número no podía expresarse como una razón. Pero para los pitagóricos llegó a suponer algo amenazador, un indicio de que su concepción del mundo podía carecer de sentido, lo cual es el otro sentido que tiene hoy la palabra irracional. En vez de compartir estos importantes descubrimientos matemáticos, los pitagóricos callaron el conocimiento de √2 y del dodecaedro. El mundo exterior no tenía que saber nada de esto.[50] Todavía hoy hay científicos opuestos a la popularización de la ciencia; creen que hay que reservar el conocimiento sagrado para los cultos, sin dejar que lo mancille la comprensión del público.

Los pitagóricos creyeron que la esfera era perfecta, porque todos los puntos de su superficie están a la misma distancia del centro. Los círculos también eran perfectos. Y los pitagóricos insistieron en que los planetas se movían siguiendo caminos circulares a velocidades constantes. Al parecer creían que no era muy decoroso que un Planeta se moviera más lento o más rápido en puntos diferentes de la órbita; el movimiento no circular era en cierto modo un movimiento defectuoso, impropio de los planetas, los cuales por ser libres con respecto a la Tierra se consideraban «perfectos».

Los pros y los contras de la tradición pitagórica pueden verse claramente en la obra de Johannes Kepler (capítulo 3). La idea pitagórica de un mundo perfecto y místico, que los sentidos no podían percibir, fue aceptada fácilmente por los primitivos cristianos y fue elemento integral de la formación temprana de Kepler. Por una parte, Kepler estaba convencido de que en la naturaleza existían armonías matemáticas (en una ocasión escribió que «el universo estaba marcado con los adornos de las proporciones armónicas»), de que ha de haber relaciones numéricas sencillas que determinen el movimiento de los planetas. Por otra parte, y siguiendo también a los pitagóricos, creyó durante largo tiempo que el único movimiento admisible era el circular uniforme. Comprobó repetidamente que los movimientos observados de los planetas no podían explicarse de este modo y lo intentó una y otra vez. Pero al contrario que muchos pitagóricos, Kepler creía en las observaciones y en los experimentos en el mundo real. Al final, observaciones detalladas del movimiento aparente de los planetas le obligaron a abandonar la idea de los caminos circulares y a comprender que los planetas seguían elipses. La atracción ejercida por la doctrina pitagórica inspiró a Kepler en su búsqueda de la armonía del movimiento planetario, y al mismo tiempo fue un obstáculo para él.

Un desdén por todo lo práctico inundó el mundo antiguo. Platón animó a los astrónomos a pensar en los cielos, pero a no perder el tiempo observándolos. Aristóteles creía que «los de clase inferior son esclavos por naturaleza, y lo mejor para ellos como para todos los inferiores es que estén bajo el dominio de un amo… El esclavo comparte la vida de su amo; el artesano está relacionado con él menos estrechamente, y sólo llega a la excelencia de modo proporcional cuando se hace esclavo. La clase más vil de mecánico tiene una esclavitud especial y separada». Plutarco escribió: «No se sigue necesariamente que si la obra te encanta con su gracia, el que la hizo sea merecedor de aprecio». La opinión de Jenofonte era: «Las artes llamadas mecánicas tienen un estigma social y es lógico que merezcan la deshonra de nuestras ciudades». A consecuencia de tales actitudes, el método experimental jónico brillante y prometedor fue en gran parte abandonado durante dos mil años. Sin experimentación no hay posibilidad de escoger entre hipótesis contradictorias, es imposible que la ciencia avance. La infección anti empírica de los pitagóricos sobrevive incluso hoy. Pero ¿por qué? ¿De dónde vino esta aversión al experimento?

Vidas aproximadas de científicos jonios y griegos entre el siglo séptimo a. de C. y el siglo quinto. La decadencia de la ciencia griega queda marcada por la escasez relativa de científicos en la tabla después del siglo primero a. de C.

El historiador de la ciencia Benjamín Farrington ha dado una explicación de la decadencia de la ciencia antigua: La tradición mercantil que desembocó en la ciencia jónica, también desembocó en una economía de esclavos. La posesión de esclavos abría el camino a la riqueza y al poder. Las fortificaciones de Polícrates fueron construidas por esclavos. Atenas en la época de Pericles, Platón y Aristóteles tenía una vasta población de esclavos. Todas las grandes formulaciones atenienses sobre la democracia eran válidas únicamente para unos pocos privilegiados. La tarea característica de los esclavos es el trabajo manual. Pero la experimentación científica es trabajo manual, trabajo del cual los propietarios de esclavos prefieren mantenerse alejados; pero los únicos que disponen de ocio para dedicarse a la ciencia son los propietarios de esclavos, llamados cortésmente gentil hombres en algunas sociedades. Por lo tanto, casi nadie se dedicó a la ciencia. Los jonios eran perfectamente capaces de construir máquinas bastante elegantes. Pero la disponibilidad de esclavos minó la motivación económica necesaria para el desarrollo de la tecnología. De este modo la tradición mercantil contribuyó al gran despertar jonio de hacia el 600 a. de C., y es posible que debido a la esclavitud haya sido también la causa de su decadencia unos dos siglos después. El caso tiene su ironía.

Tendencias semejantes se observan en todo el mundo. El punto culminante de la astronomía china indígena se produjo hacia 1280, con la obra de Guo Shoujing, quien se sirvió de una línea base observacional de 1500 años y mejoró los instrumentos astronómicos y las técnicas matemáticas de cálculo. Se cree en general que la astronomía china sufrió después una rápida decadencia. Nathan Sivin cree que esto se debe en parte «a un aumento en la rigidez de la elites, de modo que las personas educadas se sentían menos inclinadas a sentir curiosidad por las técnicas y menos dispuestas a valorar la ciencia como una dedicación digna de un caballero». La ocupación de astrónomo se convirtió en un cargo hereditario, sistema este inconciliable con el avance de la materia. Además, «la responsabilidad por la evolución de la astronomía quedó centrada en la corte imperial, y se dejó principalmente en manos de técnicos extranjeros», sobre todo de jesuitas, que habían presentado a Euclides y Copérnico a los asombrados chinos, pero que al producirse la censura de este último tenían interés en disfrazar y suprimir la cosmología heliocéntrica. Quizás la ciencia nació muerta en las civilizaciones india, maya y azteca por motivos idénticos a los de su decadencia en Jonia, la omnipresencia de la economía esclavista. Un problema básico en el actual Tercer Mundo (político) es que las clases educadas tienden a ser los hijos de los ricos, interesados en mantener el status quo, o bien no acostumbrados a trabajar con sus manos o a poner en duda la sabiduría convencional. La ciencia ha arraigado allí con mucha lentitud.

Platón y Aristóteles se sentían confortables en una sociedad esclavista. Dieron justificaciones para la opresión. Estuvieron al servicio de tiranos. Enseñaron la alienación del cuerpo separado del alma (ideal muy natural en una sociedad esclavista); separaron la materia del pensamiento; divorciaron a la Tierra de los cielos: divisiones estas que iban a dominar el pensamiento occidental durante más de veinte siglos. Platón, quien creía que «todas las cosas están llenas de dioses», utilizó concretamente la metáfora de la esclavitud para conectar su política con su cosmología. Se dice que propuso quemar todas las obras de Demócrito (formuló una recomendación semejante para las obras de Homero), quizás porque Demócrito no aceptaba la existencia de almas inmortales o de dioses inmortales o el misticismo pitagórico, o porque creían en un número infinito de mundos. No sobrevive ni una sola obra de los setenta y tres libros que se dice escribió Demócrito. Todo lo que conocemos son fragmentos, principalmente sobre ética, y relaciones de segunda mano. Lo mismo sucedió con las obras de casi todos los demás antiguos científicos jonios.

Pitágoras y Platón, al reconocer que el Cosmos es cognoscible y que hay una estructura matemática subyacente en la naturaleza, hicieron avanzar mucho la causa de la ciencia. Pero al suprimir los hechos inquietantes, al creer que había que reservar la ciencia para una pequeña élite, al expresar su desagrado por la experimentación, al abrazar el misticismo y aceptar fácilmente las sociedades esclavistas, hicieron retroceder la empresa del hombre. Después de un sueño místico en el cual yacían enmoheciéndose las herramientas del examen científico, el método jonio, transmitido en algunos casos a través de los sabios de la Biblioteca de Alejandría, fue al final redescubierto. El mundo occidental despertó de nuevo. La experimentación y la investigación abierta se hicieron otra vez respetables. Se leyeron de nuevo libros y fragmentos olvidados. Leonardo, Colón y Copérnico fueron inspirados por esta antigua tradición griega o siguieron independientemente parte de sus huellas. En nuestra época hay mucha ciencia jónica, aunque falte en política y en religión, y hay en grado considerable un valeroso libre examen. Pero también hay supersticiones detestables y ambigüedades éticas mortales. Llevamos la marca de antiguas contradicciones.

Los platónicos y sus sucesores cristianos sostenían la idea peculiar de que la Tierra estaba viciada y de que era en cierto modo repugnante mientras que los cielos eran perfectos y divinos. La idea fundamental de que la Tierra es un planeta, de que somos ciudadanos del universo, fue rechazada y olvidada. Aristarco fue el primero en sostener esta idea. Aristarco, nacido en Samos tres siglos después de Pitágoras, fue uno de los últimos científicos jonios. En su época el centro de la ilustración intelectual se había desplazado a la gran Biblioteca de Alejandría. Aristarco fue la primera persona que afirmó que el centro del sistema planetario está en el Sol y no en la Tierra, que todos los planetas giran alrededor del Sol y no de la Tierra. Es típico que sus escritos sobre esta cuestión se hayan perdido. Dedujo a partir del tamaño de la sombra de la Tierra sobre la Luna durante un eclipse lunar que el Sol tenía que ser mucho mayor que la Tierra y que además tenía que estar a una distancia muy grande. Quizás esto le hizo pensar que era absurdo que un cuerpo tan grande como el Sol girara alrededor de un cuerpo tan pequeño como la Tierra. Puso al Sol en el centro, hizo que la Tierra girara sobre su eje una vez al día y que orbitara el Sol una vez al año.

Esta es la misma idea que asociamos con el nombre de Copérnico, a quien Galileo llamó restaurador y confirmador, no inventor, de la hipótesis heliocéntrica.[51] Durante la mayor parte de los 1800 años que separan a Aristarco de Copérnico nadie conoció la disposición correcta de los planetas, a pesar de haber sido expuesta de modo perfectamente claro en el 280 a. de C. La idea escandalizó a algunos de los contemporáneos de Aristarco. Hubo gritos, como los dedicados a Anaxágoras, a Bruno y a Galileo, pidiendo que se les condenara por impiedad. La resistencia contra Aristarco y Copérnico, una especie de egocentrismo en la vida diaria, continúa vivo entre nosotros: todavía decimos que el Sol se levanta y que el Sol, se pone. Han pasado 2200 años desde Aristarco y nuestro lenguaje todavía pretende que la Tierra no gira.

La distancia existente entre los planetas —cuarenta millones de kilómetros de la Tierra a Venus en el momento de máxima aproximación, seis mil millones de kilómetros hasta Plutón— habría asombrado a aquellos griegos que se escandalizaban ante la afirmación de que el Sol pudiera ser tan grande como el Peloponeso. Era algo natural imaginar el sistema solar como una cosa más compacta y local. Si levanto un dedo delante de los ojos y lo examino primero con el ojo izquierdo y luego con el derecho parece desplazarse sobre el fondo lejano. Cuanto más cerca ponga el dedo más parecerá desplazarse. Puedo estimar la distancia de mi dedo midiendo este desplazamiento aparente, o paralaje. Si mis ojos estuviesen más separados, el dedo parecería desplazarse bastante más. Cuanto más larga es la línea base a partir de la cual hacemos dos observaciones, mayor es el paralaje y mejor podremos medir la distancia a objetos remotos. Pero nosotros vivimos en una plataforma en movimiento, la Tierra, que cada seis meses va de un extremo a otro de su órbita, una distancia de 300.000.000 km. Si observamos con una separación de seis meses objetos celestiales inmóviles, estaremos en disposición de medir distancias muy grandes. Aristarco sospechó que las estrellas eran soles distantes. Puso al Sol entre las estrellas fijas. La falta de un paralaje estelar detectable a medida que la Tierra se desplazaba sugería que las estrellas estaban mucho más lejos que el Sol. Antes de la invención del telescopio, el paralaje, incluso de las estrellas más próximas, era demasiado pequeño para ser detectado. El primer paralaje de una estrella no se midió hasta el siglo diecinueve. Quedó claro entonces, aplicando directamente la geometría griega que las estrellas estaban a años luz de distancia.

Hay otro sistema para medir la distancia a las estrellas que los jonios eran perfectamente capaces de descubrir, aunque por lo visto no hicieron uso de él. Todos sabemos que cuanto más lejos está un objeto más pequeño parece. Esta proporcionalidad inversa entre el tamaño aparente y la distancia es la base de la perspectiva en el arte y la fotografía. Por lo tanto, cuanto más lejos estamos del Sol más pequeño y oscuro aparece. ¿A qué distancia tendríamos que estar del Sol para que pareciera tan pequeño y oscuro como una estrella? O bien de modo equivalente, ¿qué tamaño ha de tener un pequeño fragmento del Sol para que sea del mismo brillo que una estrella?

Reconstrucción simple de la placa de latón perforada utilizada por Christiaan Huygens en el siglo diecisiete para determinar la distancia a las estrellas. (Fotografía, Bill Ray).

Christiaan Huygens llevó a cabo un primer experimento para responder a esta cuestión, muy en la onda de la tradición jonia. Huygens practicó pequeños agujeros en una placa de latón, puso la placa contra el Sol y se preguntó cuál era el agujero cuyo brillo equivalía al de la brillante estrella Sirio, brillo que recordaba de la noche anterior. El agujero resultó ser[52] l/28.000 del tamaño aparente del Sol. Dedujo: o por lo tanto que Sirio tenía que estar 28.000 veces más lejos de nosotros que el Sol, o sea aproximadamente a medio año luz de distancia. Es difícil recordar el brillo que tiene una estrella muchas horas después de haberla visto, pero Huygens lo recordó muy bien. Si hubiese sabido que el brillo de Sirio era intrínsecamente superior al del Sol, hubiese dado con una respuesta casi exacta: Sirio está a 8,8 años luz de distancia. El hecho de que Aristarco y Huygens utilizaran datos imprecisos y consiguieran respuestas imperfectas apenas importa. Explicaron sus métodos tan claramente que si luego se disponía de mejores observaciones podían derivarse respuestas más precisas.

Entre las épocas de Aristarco y de Huygens los hombres dieron respuesta a la pregunta que me había excitado tanto cuando yo era un chico que crecía en Brooklyn: ¿Qué son las estrellas? La respuesta es que las estrellas son soles poderosos a años luz de distancia en la vastedad del espacio interestelar.

El gran legado de Aristarco es este: ni nosotros ni nuestros planetas disfrutamos de una posición privilegiada en la naturaleza. Desde entonces esta intuición se ha aplicado hacia lo alto, hacia las estrellas y hacia nuestro entorno, hacia muchos subconjuntos de la familia humana, con gran éxito y una oposición invariable. Ha causado grandes avances en astronomía, física, biología, antropología, economía y política. Me pregunto si su extrapolación social es una razón principal que explica los intentos para suprimirla.

El legado de Aristarco se ha extendido mucho más allá del reino de las estrellas. A fines del siglo dieciocho, William Herschel, músico y astrónomo de Jorge III de Inglaterra, completó un proyecto destinado a cartografiar los cielos estrellados y descubrió que había al parecer un número igual de estrellas en todas direcciones en el plano o faja de la Vía Láctea; dedujo razonablemente de esto que estábamos en el centro de la Galaxia.[53] Poco antes de la primera guerra mundial, Harlow Shapley, de Missouri, ideó una técnica para medir las distancias de los cúmulos globulares, estos deliciosos conjuntos esféricos de estrellas que parecen enjambres de abejas. Shapley había descubierto una candela estelar estándar, una estrella notable por su variabilidad, pero que tenía siempre el mismo brillo intrínseco. Shapley comparó la disminución en el brillo de tales estrellas presentes en cúmulos globulares con su brillo real, deducido de representantes cercanos, y de este modo pudo calcular su distancia: del mismo modo en un campo podemos estimar la distancia a que se encuentra una linterna de brillo intrínseco conocido a partir de la débil luz que llega a nosotros, es decir siguiendo en el fondo el método de Huygens. Shapley descubrió que los cúmulos globulares no estaban centrados alrededor de las proximidades solares sino más bien alrededor de una región distante de la Vía Láctea, en la dirección de la constelación de Sagitario, el Arquero. Pensó que era muy probable que los cúmulos globulares utilizados en esta investigación, casi un centenar, estuviesen orbitando y rindiendo homenaje al centro masivo de la Vía Láctea.

Shapley tuvo el valor en 1915 de proponer que el sistema solar estaba en las afueras y no cerca del núcleo de nuestra galaxia. Herschel se había equivocado a causa de la gran cantidad de polvo oscurecedor que hay en la dirección de Sagitario; le era imposible conocer el número enorme de estrellas situadas detrás. Actualmente está muy claro que vivimos a unos 30.000 años luz del núcleo galáctico, en los bordes de un brazo espiral, donde la densidad local de estrellas es relativamente reducida. Quizás haya seres viviendo en un planeta en órbita alrededor de una estrella central de uno de los cúmulos globulares de Shapley, o de una estrella situada en el núcleo. Estos seres quizás nos compadezcan por el puñado de estrellas visibles a simple vista que tenemos, mientras que sus cielos están incendiados con ellas. Cerca del centro de la Vía Láctea serían visibles a simple vista millones de estrellas brillantes, mientras que nosotros sólo tenemos unos miserables miles. Podría ponerse nuestro Sol u otros soles, pero no habría nunca noche.

Representación esquemática de la Vía Láctea vista de canto, rodeada por un enjambre de cúmulos estelares globulares, cada uno de los cuales contiene entre cien mil y diez millones de estrellas. A esta escala el Sol y la Tierra están situados cerca del borde exterior de los brazos en espiral, sobresaliendo del núcleo galáctico. (Pintura de Jon Lomberg).

Hasta bien entrado el siglo veinte, los astrónomos creían que sólo había una galaxia en el Cosmos, la Vía Láctea, aunque en el siglo dieciocho Thomas Wright, de Durban, e Immanuel Kant, de Kónigsberg, tuvieron separadamente la premonición de que las exquisitas formas luminosas espirales que se veían a través del telescopio eran otras galaxias. Kant sugirió explícitamente que M31 en la constelación de Andrómeda era otra Vía Láctea, compuesta por un número enorme de estrellas, y propuso dar a estos objetos la denominación evocativa e inolvidable de universos islas. Algunos científicos jugaron con la idea de que las nebulosas espirales no eran universos islas distantes sino nubes cercanas de gas interestelar en condensación, quizás en camino de convertirse en sistemas solares. Para comprobar la distancia de las nebulosas espirales, se necesitaba una clase de estrellas variables intrínsecamente mucho más brillantes que proporcionara una nueva candela estándar. Se descubrió que estas estrellas, identificadas en M31 por Edwin Hubble en 1924, eran alarmantemente débiles, y que por lo tanto M31 estaba a una distancia prodigiosa de nosotros, distancia que hoy se calcula en algo más de dos millones de años luz. Pero si M31 estaba a tal distancia no podía ser una nube de simples dimensiones interestelares, tenía que ser mucho mayor: una galaxia inmensa por derecho propio. Y las demás galaxias, más débiles, debían estar todavía a distancias mayores, un centenar de miles de millones de ejemplares esparcidas a través de la oscuridad hasta las fronteras del Cosmos conocido.

Los cúmulos estelares globulares gravitan alrededor del centro masivo de la galaxia Vía Láctea y lo demarcan. Muchos están situados en un gran halo esférico de estrellas y cúmulos estelares que envuelven nuestra galaxia espiral. Unos pocos, como los de la foto, se concentran hacia el núcleo galáctico. El cielo, visto desde los planetas de uno cualquiera de estos soles, estaría llameando con estrellas. La designación de estos cúmulos globulares es NGC 6522 y NGC 6528, siendo NGC la abreviatura de «New General Catalog» (Nuevo Catálogo General), una compilación de cúmulos y de galaxias. Era nuevo cuando se compiló por primera vez en 1888. (Cedida por el observatorio nacional de Kitt Peak. © Association of Universities for Research in Astronomy, Inc).

Los hombres en todos los momentos de su existencia han buscado su lugar en el Cosmos. En la infancia de nuestra especie (cuando nuestros antepasados contemplaban las estrellas con aire distraído), entre los científicos jonios de la Grecia antigua, y en nuestra propia época, nos ha fascinado esta pregunta: ¿Dónde estamos? ¿Quiénes somos? Descubrimos que vivimos en un planeta insignificante de una estrella ordinaria perdida entre dos brazos espirales en las afueras de una galaxia que es un miembro de un cúmulo poco poblado de galaxias arrinconado en algún punto perdido de un universo en el cual hay muchas más galaxias que personas. Esta perspectiva es una valerosa continuación de nuestra tendencia a construir y poner a prueba modelos mentales de los cielos; el Sol en forma de piedra al rojo vivo, las estrellas como llama celestial y la Galaxia como el espinazo de la noche.

Desde Aristarco, cada paso en nuestra investigación nos ha ido alejando del escenario central del drama cósmico. No hemos dispuesto de mucho tiempo para asimilar estos nuevos descubrimientos. Los hallazgos de Shapley y de Hubble tuvieron lugar cuando ya vivían muchas personas que todavía están entre nosotros. Hay quien deplora secretamente estos grandes descubrimientos, porque considera que cada paso ha sido una degradación, porque en lo más íntimo de su corazón anhela todavía un universo cuyo centro, foco y fulcro sea la Tierra. Pero para poder tratar con el Cosmos primero tenemos que entenderlo, aunque nuestras esperanzas de disfrutar de un status preferencial conseguido de balde se vean contravenidas en el mismo proceso. Una condición previa esencial para mejorar nuestra vecindad es comprender dónde vivimos. También ayuda saber el aspecto que presentan otros barrios. Si deseamos que nuestro planeta sea importante hay algo que podemos hacer para contribuir a ello. Hacemos importante a nuestro mundo gracias al valor de nuestras preguntas y a la profundidad de nuestras respuestas.

Nos embarcamos en nuestro viaje cósmico con una pregunta formulada por primera vez en la infancia de nuestra especie y repetida en cada generación con una admiración inalterada: ¿Qué son las estrellas? Explorar es algo propio de nuestra naturaleza. Empezamos como pueblo errante, y todavía lo somos. Estuvimos demasiado tiempo en la orilla del océano cósmico. Ahora estamos a punto para zarpar hacia las estrellas.

Un hipotético planeta helado en el sistema de la nebulosa anular de la Lira. La estrella central se ha despojado de su atmósfera exterior produciendo una cáscara de gas brillante y multicolor en lenta expansión. Este sistema, que está a una distancia de nosotros de 1500 años luz, es un objetivo para la exploración humana en un futuro distante. (Pintura de David Egge, 1979).

Ir a la siguiente página

Report Page