Cosmos

Cosmos


VIII. Viajes a través del espacio y el tiempo

Página 17 de 34

Capítulo VIII
VIAJES A TRAVÉS
DEL ESPACIO Y EL TIEMPO

Nadie ha vivido más tiempo que un niño muerto, y Matusalén[54] murió joven. El Cielo y la Tierra son tan viejos como yo, y las diez mil cosas son una sola.

ZHUANG ZI, hacia el 300 a. de C.

Hemos amado con demasiado fervor a las estrellas para temer a la noche.

(Epitafio en la lápida mortuoria de dos astrónomos aficionados.)

Las estrellas garabatean en nuestros ojos heladas epopeyas, cantos resplandecientes del espacio inconquistado.

HART CRANE, El puente

LAS SUBIDAS Y BAJADAS del rompiente se deben en parte a las mareas. La Luna y el Sol están a gran distancia, pero su influencia gravitatoria es muy real y perceptible aquí en la Tierra. La playa nos recuerda el espacio. Granos finos de arena, todos ellos de tamaño más o menos uniforme, producidos a partir de rocas mayores después de eras de empujones y roces, de abrasión y erosión, de movimientos impulsados también, a través de las olas y del tiempo atmosférico, por la Luna y el Sol. La playa nos recuerda también el tiempo. El mundo es mucho más antiguo que la especie humana.

Un puñado de arena contiene unos 10.000 granos, un número superior al de las estrellas que podemos ver a simple vista en una noche despejada. Pero el número de estrellas que podemos ver es sólo una mínima fracción del número de estrellas que existen. Las que nosotros vemos de noche son un pequeño resumen de las estrellas más cercanas. En cambio el Cosmos tiene una riqueza que supera toda medida: el número total de estrellas en el universo es mayor que todos los granos de arena de todas las playas del planeta Tierra.

A pesar de los esfuerzos de los antiguos astrónomos y astrólogos por poner figuras en el cielo, una constelación no es más que una agrupación arbitraria de estrellas, compuesta de estrellas intrínsecamente débiles que nos parecen brillantes porque están cerca, y de estrellas intrínsecamente más brillantes que están algo más distantes. Puede decirse con una precisión muy grande que todos los puntos de la Tierra están a igual distancia de cualquier estrella. A esto se debe que las formas que adoptan las estrellas en una constelación dada no cambien cuando nos desplazamos por ejemplo del Asia central soviética al Medio oeste norteamericano. Desde el punto de vista astronómico, la URSS y los Estados Unidos están en el mismo lugar. Las estrellas de cualquier constelación están tan lejos que no podemos reconocerlas como una configuración tridimensional mientras permanecemos atados a la Tierra. La distancia media entre las estrellas es de unos cuantos años luz, y recordemos que un año luz es diez billones de kilómetros. Para que cambien las formas de las constelaciones tenemos que viajar distancias comparables a las que separan a las estrellas; debemos aventuramos a través de años luz. Así nos parecerá que algunas estrellas cercanas se salen de la constelación y que otras se introducen en ella, y su configuración cambiará espectacularmente.

Hasta el momento nuestra tecnología es totalmente incapaz de llevar a cabo estos magníficos viajes interestelares, por lo menos con una duración razonable. Pero podemos enseñar a nuestras computadoras las posiciones tridimensionales de todas las estrellas cercanas, y pedirles que se nos lleven en un pequeño viaje, por ejemplo para circunnavegar el conjunto de estrellas brillantes que constituyen la Osa Mayor, y observar entonces el cambio de las constelaciones. Para relacionar las estrellas de las constelaciones típicas utilizamos los diagramas usuales de punto y raya. A medida que cambiamos de perspectiva, vemos que sus formas aparentes sufren deformaciones pronunciadas. Los habitantes de los planetas de estrellas distantes contemplan en sus cielos nocturnos constelaciones muy distintas de las nuestras: otros tests de Rorschach para otras mentes. Quizás dentro de unos cuantos siglos una nave espacial de la Tierra recorrerá realmente estas distancias a una velocidad notable y verá nuevas constelaciones que ningún hombre ha visto hasta ahora, excepto a través de una computadora.

El aspecto de las constelaciones cambia no sólo en el espacio sino también en el tiempo; no sólo al cambiar nuestra posición sino también al dejar que transcurra un tiempo suficientemente largo. A veces las estrellas se desplazan conjuntamente en grupo o en cúmulo; a veces, una estrella sola puede moverse muy rápidamente con relación a sus compañeras. Puede suceder que una de estas estrellas abandone una constelación y entre en otra. A veces, un miembro de un sistema de dos estrellas explota, rompiendo las trabas gravitacionales que mantenían atada a su compañera, la cual sale disparada hacia el espacio con su anterior velocidad orbital, un disparo de honda en el cielo. Además las estrellas nacen, las estrellas evolucionan, las estrellas mueren. Si esperamos lo suficiente aparecerán nuevas estrellas y desaparecerán estrellas viejas. Las figuras del cielo se funden lentamente y van cambiando.

La Osa Mayor, vista desde la Tierra (izquierda), de lado (en el centro) y desde detrás (derecha). Veríamos las dos últimas perspectivas si pudiésemos desplazarnos a los puntos de vista respectivos, a unos 150 años luz de distancia.

Las constelaciones han cambiado incluso en el transcurso de la vida de la especie humana: unos cuantos millones de años. Consideremos la actual configuración de la Osa Mayor, o Carro. Nuestra computadora nos puede trasladar no sólo por el espacio sino también por el tiempo. Si pasamos hacia atrás la película de la Osa Mayor, y dejamos que las estrellas se muevan, nos encontramos que hace un millón de años su aspecto era muy distinto. La Osa Mayor se parecía entonces más bien a una lanza. Si una máquina del tiempo nos soltara abruptamente en una edad desconocida del pasado remoto, podríamos en principio determinar la época por la configuración de las estrellas: si la Osa Mayor es como una lanza, tenemos que estar a mediados del pleistoceno.

Imágenes generadas por computadora de la Osa Mayor tal como se hubiese visto desde la Tierra hace un millón de años, y hace medio millón de años. Su aspecto actual es el del dibujo a la derecha.

También podemos pedir al computador que pase hacia delante la película de una constelación. Consideremos Leo, el León. El zodíaco es una faja de doce constelaciones que parece envolver el cielo en la zona que recorre aparentemente el Sol a lo largo del año. La raíz de la palabra es la misma que la de zoo, porque a las constelaciones zodiacales, como Leo, se han atribuido principalmente nombres de animales. Dentro de un millón de años Leo se parecerá todavía menos a un león que ahora. Quizás nuestros remotos descendientes le llamarán la constelación del radiotelescopio, aunque sospecho que dentro de un millón de años el radiotelescopio habrá quedado más superado que la lanza con punta de piedra en la actualidad.

Dibujo generado por computadora de la constelación Leo, tal como aparece ahora (arriba) y tal como aparecerá vista desde nuestro planeta dentro de un millón de años.

La constelación (no zodiacal) de Orión, el cazador, está perfilada por cuatro estrellas brillantes y cortada por una línea diagonal de tres estrellas que representan el cinturón del cazador. Las estrellas más débiles que penden del cinturón son, según el test proyectivo de la astronomía convencional, la espada de Orión. La estrella central de la espada no es en realidad una estrella sino una gran nube de gas, llamada la Nebulosa de Orión, en la que están naciendo muchas estrellas. Muchas de las estrellas de Orión son estrellas jóvenes y calientes que evolucionan rápidamente y acaban sus días en colosales explosiones cósmicas llamadas supernovas. Nacen y mueren en períodos de decenas de millones de años. Si hiciéramos pasar rápidamente hacia el futuro la película de Orión, en la computadora obtendríamos un efecto sorprendente, los nacimientos y muertes espectaculares de muchas de sus estrellas, que resplandecen de pronto y mueren en un parpadeo como luciérnagas en la noche.

La vecindad del Sol, los alrededores inmediatos del Sol en el espacio, incluye el sistema estelar más próximo, Alpha Centauri. Se trata en realidad de un sistema triple, en el que dos estrellas giran una alrededor de la otra y una tercera estrella, Próxima Centauri, está orbitando el primer par a una distancia discreta. En algunas posiciones de su órbita Próxima es la estrella conocida más próxima al Sol: de ahí su nombre. La mayoría de estrellas en el cielo forman parte de sistemas estelares dobles o múltiples. Nuestro solitario Sol es en cierto modo una anomalía.

La segunda estrella más brillante de la constelación de Andrómeda, llamada Beta Andromedae, está a setenta y cinco años luz de distancia. La luz mediante la cual la vemos se ha pasado setenta y cinco años atravesando las tinieblas del espacio interestelar en su largo viaje hasta la Tierra. Si ocurriera el hecho improbable de que Beta Andromedae hubiera volado en mil pedazos el martes pasado no lo sabríamos hasta dentro de setenta y cinco años, porque esta interesante información que viaja a la velocidad de la luz necesitaría setenta y cinco años para cruzar las enormes distancias interestelares. Cuando la luz con la cual vemos ahora a esta estrella inició su largo viaje, el joven Albert Einstein, que trabajaba en la oficina suiza de patentes, había acabado de publicar aquí en la Tierra su histórica teoría de la relatividad especial.

El espacio y el tiempo están entretejidos. No podemos mirar hacia el espacio sin mirar hacia atrás en el tiempo. La luz se desplaza con mucha rapidez. Pero el espacio está muy vacío y las estrellas están muy separadas. Distancias de setenta y cinco años luz o inferiores son muy pequeñas comparadas con otras distancias de la astronomía. Del Sol al centro de la Vía Láctea hay 30.000 años luz. De nuestra galaxia a la galaxia espiral más cercana, M31, también en la constelación de Andrómeda, hay 2.000.000 años luz. Cuando la luz que vemos actualmente de M31 partió de allí hacia la Tierra no había hombres en nuestro planeta, aunque nuestros antepasados estaban evolucionando rápidamente hacia nuestra forma actual. La distancia de la Tierra a los quásars más remotos es de ocho o diez mil millones de años luz. Los vemos tal como eran antes de la acumulación que creó la Tierra, antes de que se formara la Vía Láctea.

Esta situación no es exclusiva de los objetos astronómicos, pero sólo los objetos astronómicos están a suficiente distancia para que la velocidad finita de la luz resulte importante. Si uno mira a una amiga a tres metros de distancia en la otra punta de la habitación no la ve como es ahora, sino tal como era hace una centésima de millonésima de segundo: (3m) / (3 x 108 m / seg.) = 1 / (108 / seg.) = 10-8 seg., es decir una centésima de microsegundo. En este cálculo nos hemos limitado a dividir la distancia por la velocidad para obtener el tiempo transcurrido. Pero la diferencia entre tu amiga ahora y ahora menos una cien millonésima de segundo es demasiado pequeña para que cuente. En cambio si miramos un quásar a ocho mil millones de años luz de distancia, el hecho de que la estemos mirando tal como era hace ocho mil millones de años puede ser muy importante. (Por ejemplo algunos piensan que los quásar son fenómenos explosivos que pueden darse con probabilidad en la historia primitiva de las galaxias. En este caso, cuanto más distante esté la galaxia, más temprana es la fase de su historia que estamos observando, y más probable es que la veamos como un quásar. De hecho el número de quásars aumenta cuando observamos a distancias superiores a unos cinco mil millones de años).

Las dos naves espaciales interestelares Voyager, las máquinas más rápidas que se hayan lanzado nunca desde la Tierra, se están desplazando ahora a una diezmilésima parte de la velocidad de la luz. Necesitarían 40.000 años para situarse a la distancia de la estrella más próxima. ¿Tenemos alguna esperanza de abandonar la Tierra y de atravesar distancias inmensas para llegar aunque sólo sea a Próxima Centauri al cabo de períodos convenientes de tiempo? ¿Podemos hacer algo para aproximarnos a la velocidad de la luz? ¿Estaremos algún día en disposición de ir a velocidad superior a ella?

Quien se hubiese paseado por el agradable paisaje campestre de la Toscana en los años 1890, hubiese podido encontrarse, quizás, con un adolescente de cabellos algo largos que había dejado la escuela y que iba de camino a Pavía. Sus maestros en Alemania le habían asegurado que no llegaría nunca a nada, que sus preguntas destruían la disciplina de la clase, y que lo mejor era que se fuera. En consecuencia se fue de la escuela y se dedicó a vagabundear por el norte de Italia disfrutando de una libertad que le permitía meditar sobre materias alejadas de los temas que le habían obligado a estudiar en su muy disciplinada escuela prusiana. Su nombre era Albert Einstein y sus meditaciones cambiaron el mundo.

Albert Einstein (1879-1955 ). Retrato de Jean-Leon Huens, @National Geographic Society. Su interés latente por la ciencia se despertó a los doce años al leer un libro de divulgación científica que le regaló un estudiante indigente llamado Max Talmey, al que los padres de Einstein habían invitado a cenar en un acto de caridad y compasión.

Einstein se había sentido fascinado por la obra de Bernstein El Libro popular de Ciencia natural, una obra de divulgación científica que describía en su primera página la increíble velocidad de la electricidad a través de los hilos y de la luz a través del espacio. Él se preguntó qué aspecto tendría el mundo si uno pudiese desplazarse sobre una onda de luz. ¡Viajar a la velocidad de la luz! ¡Qué pensamiento atractivo y fascinante para un chico de excursión por una carretera en el campo salpicado e inundado con la luz del Sol! Si uno se desplazaba sobre una onda de luz, era imposible saber que estaba sobre ella: si uno partía sobre la cresta de una onda, permanecería sobre la cresta y perdería toda noción de que aquello era una onda. Algo raro sucede a la velocidad de la luz. Cuanto más pensaba Einstein sobre estos temas más inquietantes se hacían. Parece que las paradojas surgen por doquier si uno puede desplazarse a la velocidad de la luz. Se habían dado por ciertas algunas ideas sin haberlas pensado con suficiente cuidado. Einstein planteó preguntas sencillas que podían haber sido formuladas siglos atrás. Por ejemplo, ¿qué significa exactamente que dos acontecimientos son simultáneos?

Supongamos que voy en bicicleta y me acerco hacia ti. Al acercarme a un cruce estoy a punto de chocar, o así me lo parece, con un carro arrastrado por un caballo. Hago una ese y consigo por los pelos que no me atropelle. Ahora imaginemos de nuevo este acontecimiento y supongamos que el carro y la bicicleta van a velocidades cercanas a la de la luz. Tú estás mirando desde el fondo de la carretera y el carro se desplaza en ángulo recto a tu visual. Tú ves que me acerco hacia ti gracias a la luz solar que reflejo. ¿No es lógico que mi velocidad se añada a la velocidad de la luz, de modo que mi imagen te llegaría mucho antes que la imagen del carro? ¿No deberías verme hacer una ese antes de ver llegar al carro? ¿Es posible que el carro y yo nos acerquemos simultáneamente al cruce desde mi punto de vista pero no desde el tuyo? ¿Es posible que yo evite por los pelos la colisión con el carro pero que tú me veas dar una ese alrededor de nada y continuar pedaleando alegremente hacia la ciudad de Vinci? Estas preguntas son curiosas y sutiles. Ponen en tela de juicio lo evidente. Es comprensible que nadie pensara en ellas antes que Einstein. A partir de preguntas tan elementales Einstein elaboró una revisión fundamental de nuestro concepto del mundo, una revolución en la física.

La paradoja de la simultaneidad en relatividad especial. El observador está mirando desde el brazo meridional de un cruce. Un ciclista se acerca desde el norte a una velocidad indicada por la flecha de trazo continuo. La luz reflejada por el ciclista se acerca al observador a una velocidad más alta, indicada por la flecha de trazos. Un coche se acerca al cruce desde el oeste a una velocidad indicada por la flecha de trazo continuo, y una luz se refleja de él hacia el ser a una velocidad dada por la correspondiente flecha de trazos. Si fuera correcto sumar la velocidad del ciclista a la velocidad de la luz (puesto que el ciclista se aproxima al observador), la luz del ciclista llegaría antes que la luz del coche, y lo que tanto el ciclista como el conductor del coche ven como un choque evitado en el último momento es presenciado de modo muy distinto por el observador. Experimentos cuidadosos demuestran que no es esto lo que sucede. La paradoja sólo se nota si la bicicleta se desplaza a una velocidad muy próxima a la de la luz. La solución de la paradoja consiste en afirmar que la velocidad de la luz ha de ser independiente de la velocidad del objeto en movimiento.

Para poder comprender el mundo, para evitar paradojas lógicas de este tipo al desplazarnos a velocidades elevadas, hay que obedecer algunas reglas, algunos mandamientos de la naturaleza. Einstein codificó estas reglas en la teoría especial de la relatividad. La luz (reflejada o emitida) por un objeto se desplaza a idéntica velocidad tanto si el objeto se mueve como si está estacionario: No sumarás tu velocidad a la velocidad de la luz. Además, ningún objeto material puede desplazarse a velocidad superior a la de la luz: No te desplazarás a la velocidad de la luz ni a velocidad superior. No hay nada en física que te impida desplazarte a una velocidad tan próxima a la de la luz como quieras; el 99,9% de la velocidad de la luz sería un buen tanto. Pero por mucho que lo intentes no conseguirás nunca ganar este último punto decimal. Para que el mundo sea consistente desde el punto de vista lógico ha de haber una velocidad cósmica límite. De no ser así uno tendría la posibilidad de alcanzar la velocidad que deseara sumando velocidades sobre una plataforma en movimiento.

Los europeos a principios de siglo solían creer en marcos de referencia privilegiados: que la cultura o la organización política alemana, o francesa o británica era mejor que la de otros países; que los europeos eran superiores a otros pueblos que habían tenido la fortuna de ser colonizados. Se rechazaba de este modo o se ignoraba la aplicación social y política de las ideas de Aristarco y de Copérnico. El joven Einstein se rebeló contra el concepto de marcos de referencia privilegiados en física y lo propio hizo en política. En un universo lleno de estrellas que salían proyectadas en todas direcciones no había lugar alguno que estuviera en reposo, ninguna estructura desde la cual contemplar el universo que fuera superior a otra estructura cualquiera. Este es el significado de la palabra relatividad. La idea es muy sencilla, a pesar de sus adornos mágicos: al observar el universo cualquier lugar es tan bueno como otro cualquiera. Las leyes de la naturaleza han de ser idénticas con independencia de quien las describa. De ser cierto esto y sería increíble que nuestra localización insignificante en el Cosmos tuviera algo especial, se deduce que uno no puede desplazarse a velocidad superior a la de la luz.

Cuando oímos el restallido de un látigo se debe a que su punta se está desplazando a una velocidad superior a la del sonido, creando una onda de choque, un pequeño bum sónico. El trueno tiene un origen semejante. Se creía, antes, que los aviones no podrían ir a velocidad superior a la del sonido. Hoy en día el vuelo supersónico es algo trivial. Pero la barrera de la luz es distinta de la barrera del sonido. No se trata simplemente de un problema de ingeniería, como el que resuelve el avión supersónico. Se trata de una ley fundamental de la naturaleza, tan básica como la gravedad. Y no hay fenómenos en nuestra experiencia como el restallido de un látigo o el estampido de un trueno que sugieran la posibilidad de desplazarse en un vacío a velocidad superior a la de la luz. Por el contrario, hay una gama muy amplia de experiencias con aceleradores nucleares y relojes atómicos por ejemplo que concuerdan de modo cuantitativo y preciso con la relatividad especial.

Los problemas de la simultaneidad no se aplican al sonido como se aplican a la luz, porque el sonido se propaga a través de algún medio material, normalmente el aire. La onda sonora que nos llega cuando un amigo está hablando es el movimiento de moléculas en el aire. En cambio la luz se desplaza en un vacío. Hay restricciones sobre la manera de desplazarse las moléculas de aire que no son válidas en un vacío. La luz del Sol nos llega a través del espacio vacío intermedio, pero por mucho que nos esforcemos no podemos oír el crepitar de las manchas solares o el estallido de las erupciones solares. Se había creído, en la época anterior a la relatividad, que la luz se propagaba a través de un medio especial que llenaba todo el espacio, llamado éter luminífero. Pero el famoso experimento de Michelson-Morley demostró que este éter era inexistente.

A veces oímos hablar de cosas que pueden desplazarse a velocidad superior a la de la luz. Se pone como ejemplo, a veces, algo llamado la velocidad del pensamiento. Esta idea es de una tontería excepcional: sobre todo teniendo en cuenta que la velocidad de los impulsos a través de las neuronas de nuestros cerebros es más o menos la misma que la de un carro de burro. El hecho de que los hombres hayan sido lo suficientemente listos para idear la relatividad demuestra que pensamos bien, pero no creo que podamos enorgullecemos de pensar rápido. Sin embargo los impulsos eléctricos en las computadoras modernas van casi a la velocidad de la luz.

La relatividad especial, elaborada totalmente por Einstein a sus veinticinco años, está confirmada por todos los experimentos realizados para comprobarla. Quizás mañana alguien inventará una teoría consistente con todo lo que ya sabemos y que salva las paradojas de la simultaneidad, evita marcos de referencia privilegiados y permite además ir a velocidad superior a la de la luz. Pero lo dudo mucho. La prohibición de Einstein contra un desplazamiento más rápido que la luz puede chocar con nuestro sentido común. Pero ¿por qué tenemos que confiar al tratar este tema en nuestro sentido común? ¿Puede condicionar nuestra experiencia a 10 kilómetros por hora las leyes de la naturaleza válidas a 300.000 kilómetros por segundo? La relatividad pone límites a lo que los hombres pueden llegar a hacer en último extremo.

Pero no se le pide al universo que esté en perfecta armonía con la ambición humana. La relatividad especial aparta de nuestras manos un sistema posible para alcanzar las estrellas: la nave que viaja a velocidad superior a la de la luz. Pero sugiere de modo tentador otro método totalmente inesperado.

Supongamos, siguiendo a George Gamow, que hay un lugar donde la velocidad de la luz no tiene su valor real de 300.000 kilómetros por segundo, sino un valor muy modesto: 40 kilómetros por hora, y además un valor que todos obedecen (no hay penas por conculcar las leyes de la naturaleza, porque nadie comete crímenes: la naturaleza se regula a sí misma y se limita a organizar las cosas de modo que sea imposible transgredir sus prohibiciones). Imaginemos que nos estamos acercando a la velocidad de la luz conduciendo un scooter. (La relatividad abunda en frases que empiezan con «Imaginemos…». Einstein llamó a este tipo de ejercicios Gedankenexperiment, experimento mental). A medida que nuestra velocidad aumenta empezamos a ver por detrás de los objetos que adelantamos. Si estamos mirando con la cabeza dirigida rígidamente hacia delante, las cosas que estaban detrás irán apareciendo dentro del campo delantero de visión. Al acercamos a la velocidad de la luz, el mundo toma desde nuestro punto de vista, un aspecto muy raro: todo acaba comprimido en una pequeña ventana circular que está constantemente delante de nosotros. Desde el punto de vista de un observador estacionario, la luz que nosotros reflejamos se enrojece cuando partimos y se azulea cuando volvemos. Si nos desplazamos hacia el observador a una velocidad cercana a la de la luz nos vemos envueltos en un fantástico resplandor cromático: nuestra emisión infrarrojo normalmente invisible se desplazará hacia las longitudes de onda visibles, más cortas.

Nos quedaremos comprimidos en la dirección del movimiento, nuestra masa aumentará, y el tiempo, nuestra sensación del tiempo, se hará más lento, lo que constituye una extraordinaria consecuencia de este desplazamiento próximo a la velocidad de la luz llamada dilatación temporal. Pero desde el punto de vista de un observador que se desplazara con nosotros alguien de paquete ninguno de estos efectos serían percibidos.

Estas predicciones peculiares y a primera vista sorprendentes de la relatividad especial son ciertas en un sentido más profundo que cualquier otra cosa en física. Dependen de nuestro movimiento relativo. Pero son reales, no ilusiones ópticas. Pueden demostrarse mediante simples matemáticas, casi todas con álgebra de primer curso, y por lo tanto las puede entender cualquier persona educada. También están de acuerdo con muchos experimentos. Relojes muy precisos transportados en aviones retrasan un poco en comparación con relojes estacionarios. Los aceleradores nucleares están diseñados de modo que tengan en cuenta el aumento de masa producido por el aumento de velocidad; y si no se tuviera esto en cuenta las partículas aceleradas chocarían con las paredes del aparato, y no habría manera de experimentar mucho en física nuclear. Una velocidad es una distancia dividida por un tiempo. Al aproximamos a la velocidad de la luz no podemos sumar simplemente las velocidades, como solemos hacer en el mundo de cada día, y los conceptos familiares de espacio absoluto y de tiempo absoluto independiente de nuestro movimiento relativo han de hacerse a un lado. Por esto nos encogemos. Por esto se produce una dilatación temporal.

Al viajar a una velocidad próxima a la de la luz uno apenas envejece, pero los amigos y los parientes que se han quedado en casa siguen envejeciendo a su ritmo normal. ¡Qué diferencia pues entre una persona que vuelve de un viaje relativista y sus amigos, que han envejecido décadas, por ejemplo, mientras él apenas ha envejecido! Un viaje a velocidad próxima a la de la luz es una especie de elixir de la vida. Puesto que el tiempo va más lento a una velocidad cercana a la de la luz, la relatividad especial nos proporciona un medio para alcanzar las estrellas. ¿Pero es posible desde el punto de vista de la ingeniería práctica viajar a una velocidad próxima a la de la luz? ¿Es realizable una nave estelar?

Busto de Leonardo da Vinci (1452-1519) en el museo Leonardo, Vinci. (Foto del autor).

La Toscana no fue solamente la caldera donde se cocieron algunas de las ideas del joven Albert Einstein; fue también la patria de otro gran genio que vivió 400 años antes, Leonardo da Vinci, a quien le encantaba encaramarse a las colinas toscanas y contemplar la tierra desde gran altura, como si estuviera planeando como un pájaro. Fue él quien dibujó las primeras perspectivas aéreas de paisajes, ciudades y fortificaciones. Leonardo, entre sus muchos intereses y realizaciones pintura, escultura, anatomía, geología, historia natural, ingeniería militar y civil tenía una gran pasión: idear y fabricar una máquina que pudiese volar. Trazó dibujos, construyó modelos, fabricó prototipos de tamaño natural, pero ninguno de ellos funcionó. No existía en aquel entonces un motor suficientemente potente y ligero. Sin embargo, los diseños eran brillantes y animaron a los ingenieros de futuros tiempos. El mismo Leonardo quedó muy desanimado por estos fracasos. Pero no era culpa suya, porque estaba atrapado en el siglo quince.

Dos diseños de máquinas voladoras debidos a Leonardo. Izquierda: modelo de un helicóptero helical del Museo Leonardo, Vinci. Este diseño inspiró a Igor Sikorsky el desarrollo del moderno helicóptero. Derecha: página de los cuadernos de Leonardo, con el texto en su «escritura espejo», mostrando el diseño de un semiornitóptero en el cual el ala interior fija es un cuerpo ascensional aerodinámico y la punta del ala batía. Fue un cambio importante en relación a la idea inicial de Leonardo de que un vehículo más pesado que el aire necesitaba alas que batieran como las de un pájaro. Este diseño influyó en los planeadores suspendidos de Lilienthal de 1891-1896, que precedieron inmediatamente a los inventos de Wilbur y Orville Wright. El cuaderno fue escrito entre 1479 y 1500.

Sucedió un caso semejante en 1939 cuando un grupo de ingenieros que había tomado el nombre de Sociedad Interplanetaria Británica diseñó una nave para trasladar personas a la Luna, utilizando la tecnología de 1939. La nave no era en absoluto idéntica al diseño de la nave espacial Apolo que llevó a cabo exactamente esta misión tres décadas después, pero sugería que algún día una misión a la Luna podía ser una posibilidad práctica de ingeniería.

Hoy en día disponemos de diseños preliminares de naves capaces de llevar personas a las estrellas. No está previsto que ninguna de estas naves parta directamente de la Tierra. Se trata de construirlas en una órbita terrestre, a partir de la cual zarparán hacia sus largos viajes interestelares. Uno de ellos recibió el nombre de Proyecto Orión, el de la constelación, recordando así que el objetivo último de la nave son las estrellas. Orión se movía impulsado por explosiones de bombas de hidrógeno, armas nucleares, contra una placa de inercia, proporcionando cada explosión una especie de puf puf, como si fuera una enorme canoa nuclear en el espacio. Orión parece totalmente práctico desde el punto de vista de su ingeniería. Por su misma naturaleza produciría grandes cantidades de desechos radiactivos, pero si se calculaba bien la misión esto sólo sucedería en las soledades del espacio interplanetario o interestelar. Orión se estuvo desarrollando seriamente en los Estados Unidos hasta la firma del tratado internacional que prohíbe hacer estallar armas nucleares en el espacio. Creo que fue una gran lástima. La nave espacial Orión es el mejor destino que puedo imaginar para las armas nucleares.

El proyecto Daedalus es un diseño reciente de la Sociedad Interplanetaria Británica. Para construirlo hay que disponer de un reactor nuclear de fusión: algo mucho más seguro y eficiente que las actuales centrales nucleares. Todavía no tenemos reactores de fusión, pero se confía en tenerlos en las próximas décadas. Orión y Daedalus podrían desplazarse a un diez por ciento de la velocidad de la luz. Un viaje a Alpha Centauri, a 4,3 años luz de distancia, precisaría de cuarenta y tres años, un plazo inferior a una vida humana. Estas naves no podrían ir a una velocidad suficientemente próxima a la de la luz para que se notara la dilatación temporal de la relatividad especial. Aunque hagamos proyecciones optimistas sobre el desarrollo de nuestra tecnología, no parece probable que Orión, Daedalus y otras naves de su ralea puedan construirse antes de la mitad del siglo veintiuno, aunque si lo deseáramos Orión se podría construir ahora.

Hay que encontrar algo distinto para poder emprender viajes más allá de las estrellas más próximas. Quizás Orión y Daedalus podrían servir de naves multigeneracionales, de modo que sólo llegarían a un planeta de otra estrella los descendientes remotos de los que partieron unos siglos antes. O quizás se descubra un sistema seguro de hibernar personas que permita congelar a los viajeros del espacio y despertarlos siglos después. Estas naves estelares no relativistas, por enormemente caras que sean, parecen en cambio de diseño, construcción y uso relativamente fácil en comparación con naves estelares que se desplacen a velocidades cercanas a las de la luz. Hay otros sistemas estelares accesibles a la especie humana, pero sólo después de grandes esfuerzos.

El vuelo espacial interestelar rápido con la velocidad de la nave aproximándose a la de la luz no es un objetivo para dentro de un siglo sino para dentro de mil o diez mil años. Pero en principio es posible. R. W. Bussard ha propuesto una especie de nave interestelar a reacción que va recogiendo la materia difusa, principalmente átomos de hidrógeno, que están flotando entre las estrellas, la acelera en un motor de fusión y la expulsa por detrás. El hidrógeno serviría tanto de combustible como de masa de reacción. Pero en el espacio profundo sólo hay un átomo en cada diez centímetros cúbicos aproximadamente, es decir en un volumen del tamaño de un racimo de uvas. Para que el reactor funcione se necesita un área frontal de recogida de centenares de kilómetros de diámetro. Cuando la nave alcanza velocidades relativistas, los átomos de hidrógeno se desplazarán en relación a la nave a una velocidad cercana a la de la luz. Si no se toman precauciones, adecuadas, la nave y sus pasajeros se freirán por la acción de estos rayos cósmicos inducidos. Una solución propuesta se basa en privar con un láser a los átomos interestelares de sus electrones y de este modo dejarlos eléctricamente cargados mientras están todavía a una cierta distancia; un campo magnético muy potente desviaría entonces a los átomos cargados hacia la pantalla de recogida y lejos del resto de la nave. El esfuerzo de ingeniería que esto supone es de una escala sin precedentes hasta ahora en la Tierra. Estamos hablando de motores del tamaño de pequeños mundos.

Naves estelares: Anteproyectos muy esquemáticos de tres diseños propuestos seriamente para el vuelo espacial interestelar. Los tres utilizan un tipo u otro de fusión nuclear. Orion está arriba, Daedalus al centro y el Bussard Ramjet al final. En principio sólo el Ramjet podría desplazarze a velocidad suficiente próxima a la de la luz para que fuera válida la dilatación temporal de la relatividad especial. El área de recogida efectiva, a la derecha, de materia interestelar tendría que ser mucho mayor de lo indicado. (Anteproyectos de diseños existentes por Rick Sternbach).

Tres proyectos de naves estelares: Orion (Theodore Taylor, Freeman Dyson y otros) arriba a la izquierda; Daedalus (Sociedad Interplanetaria Británica) arriba a la derecha; Ramjet Interestelar (R. W. Bussard y otros), debajo (Pinturas de Rick Sternbach).

Pero dediquemos un momento a pensar en esta nave. La Tierra nos atrae gravitatoriamente con una cierta fuerza, que si estamos cayendo experimentamos en forma de aceleración. Si caemos de un árbol —cosa que debió sucederles a muchos de nuestros antepasados protohumanos— bajaremos a plomo cada vez más de prisa y nuestra velocidad de caída aumentará en diez metros por segundo cada segundo. Esta aceleración que caracteriza a la fuerza de la gravedad que nos mantiene sobre la superficie de la Tierra, se llama 1g, donde g es la gravedad de la Tierra. Con aceleraciones de 1g nos sentimos a gusto; hemos crecido con 1g. Si viviéramos en una nave interestelar que pudiese acelerar a 1g, nos encontraríamos en un ambiente perfectamente natural. De hecho uno de los rasgos más importantes de la teoría general de la relatividad, teoría posterior debida a Einstein, es la equivalencia entre las fuerzas gravitatorias y las fuerzas que sentiríamos en una nave espacial en aceleración. Después de un año de estar en el espacio con una aceleración continua de 1g tendríamos una velocidad próxima a la de la luz: (0,01 km/seg2) x (3 x l07seg) = 3 x 105 km/seg.

Supongamos que una nave espacial acelera a 1g, acercándose cada vez más a la velocidad de la luz hasta el punto medio del viaje; y que luego se le da la vuelta y desacelera a 1g hasta llegar a su destino. Durante la mayor parte del viaje la velocidad sería muy próxima a la de la luz y el tiempo se haría enormemente lento. Un objetivo para una misión de cercanías y un sol con posibles planetas es la estrella de Barnard, situada a unos seis años luz de distancia. Se podría llegar a ella en unos ocho años medidos por el reloj de a bordo; al centro de la Vía Láctea, en veintiún años; M31, la galaxia de Andrómeda, en veintiocho años. No hay duda que quienes se quedaran en la Tierra verían las cosas de modo distinto. En lugar de veintiún años para llegar al centro de la Galaxia medirán un tiempo transcurrido de 30.000 años. Cuando volvamos a casa no quedarán muchos amigos para darnos la bienvenida. En principio un viaje así con los puntos decimales más próximos todavía a la velocidad de la luz nos permitiría dar la vuelta al universo conocido en unos cincuenta y seis años de tiempo de la nave. Regresaríamos a decenas de miles de millones de años en el futuro, y encontraríamos la Tierra convertida en un montón de ceniza y al Sol muerto. El vuelo espacial relativista hace el universo accesible a las civilizaciones avanzadas, pero únicamente a quienes participan en el viaje. No parece que haya ningún modo de conseguir que la información llegue a los que se quedaron en casa a una velocidad superior a la de la luz.

Es probable que los diseños de Orión, Daedalus y el Ramjet Bussard estén más alejados de la nave interestelar auténtica que algún día construiremos que los modelos de Leonardo de nuestros actuales transportes supersónicos. Pero si conseguimos no destruirnos creo que algún día nos aventuraremos hacia las estrellas. Cuando hayamos explorado todo nuestro sistema solar, nos harán señas los planetas de otras estrellas.

El viaje espacial y el viaje por el tiempo están relacionados. Podemos viajar rápido por el espacio porque viajamos rápido hacia el futuro. Pero, y del pasado, ¿qué? ¿Podemos volver al pasado y cambiarlo? ¿Podemos lograr que los hechos se desarrollen de modo distinto a lo que dicen los libros de historia? Nos estamos desplazando continuamente hacia el futuro a una velocidad de un día por día. Con naves espaciales relativistas podríamos ir hacia el futuro a mayor velocidad. Pero muchos físicos creen que un viaje al pasado es imposible. Según ellos, aunque dispusiéramos de un aparato capaz de ir hacia atrás en el tiempo, no podríamos hacer nada importante. Si alguien viaja al pasado e impide que sus padres se casen, evitará haber nacido, lo cual es en cierto modo una contradicción, porque es evidente que este alguien existe. Como sucede con la demostración de la irracionalidad de √2, o en la discusión de la simultaneidad en relatividad espacial, se trata de un argumento que permite dudar de la premisa porque la conclusión parece absurda.

Pero otros físicos proponen la posible coexistencia, una al lado de otra, de dos historias alternativas, dos realidades igualmente válidas: la que uno conoce y otra en la que uno no ha nacido nunca. Quizás el tiempo tiene muchas dimensiones potenciales, aunque estemos condenados a experimentar sólo una de ellas. Supongamos que pudiéramos ir al pasado y cambiarlo, persuadiendo por ejemplo a la reina Isabel para que no diera su apoyo a Cristóbal Colón.

Esto equivale a poner en marcha una secuencia diferente de acontecimientos históricos, que quienes hemos abandonado en nuestra línea temporal no llegarán a conocer nunca. Si fuese posible este tipo de viaje temporal podría existir en cierto modo cualquier historia alternativa imaginable.

La historia es en su mayor parte un haz complejo de hilos profundamente entretejidos, fuerzas sociales, culturales y económicas difíciles de desenredar. Los acontecimientos pequeños, impredecibles y casuales que en número incontable van fluyendo continuamente, no tienen a menudo consecuencias de largo alcance. Pero algunos acontecimientos, los que tienen lugar en intersecciones críticas o puntos de ramificación, pueden cambiar el aspecto de la historia. Puede haber casos en los que resulte posible provocar cambios profundos mediante ajustes relativamente triviales. Cuanto más lejos esté situado en el pasado este acontecimiento más poderosa podrá ser su influencia: porque el brazo de la palanca del tiempo se hace más largo.

Un virus de poliomielitis es un diminuto microorganismo. Cada día topamos con muchos de ellos. Pero por suerte es un hecho raro que nos infecten y provoquen esta temida enfermedad. Franklin D. Roosevelt, el presidente número treinta y dos de los Estados Unidos, tuvo la polio. Se trata de una enfermedad que deja lisiado y quizás esto hizo que Roosevelt sintiera una mayor compasión por los desvalidos; o quizás aumentó sus ansias de éxito. Si la personalidad de Roosevelt hubiese sido distinta, o si no hubiese tenido nunca la ambición de llegar a presidente de los Estados Unidos, es posible que la gran depresión de los años 1930, la segunda guerra mundial y el desarrollo de las armas nucleares hubiesen tenido un desenlace distinto. El futuro del mundo hubiese podido cambiar. Pero un virus es una cosa insignificante, que mide sólo una millonésima de centímetro. Apenas es nada.

Supongamos en cambio que nuestro viajero del tiempo hubiese convencido a la reina Isabel de que la geografía de Colón era errónea, de que según la estimación por Eratóstenes de la circunferencia de la Tierra Colón no podía alcanzar nunca el Asia. Es casi seguro que en unas pocas décadas otro europeo se habría presentado y habría zarpado hacia el Nuevo Mundo. Las mejoras en la navegación, el incentivo del comercio de las especias y la competencia entre las potencias europeas rivales hacían más o menos inevitable el descubrimiento de América. Como es lógico, hoy no existiría una nación llamada Colombia, ni el Distrito de Columbia ni Columbus, Ohio, ni la Universidad de Columbia en las Américas. Pero el curso general de la historia podría haber sido más o menos el mismo. Para poder afectar el futuro de modo profundo es probable que un viajero del tiempo tuviese que haber intervenido en un número determinado de acontecimientos cuidadosamente escogidos, a fin de cambiar el tejido de la historia.

Sello emitido coincidiendo con la Exposición Colombina de 1892, donde aparece Cristóbal Colón presentando sus argumentos geográficos y económicos a la reina Isabel. ¿Qué gran viaje de descubrimiento estará en marcha en el año 1992, cuando se cumpla el quinientos aniversario del descubrimiento de América por Colón?

Es una hermosa fantasía explorar estos mundos que nunca fueron. Si los visitáramos podríamos entender realmente cómo funciona la historia; la historia podría convertirse en una ciencia experimental. Si no hubiese vivido nunca una persona aparentemente decisiva por ejemplo Platón, o Pablo, o Pedro el Grande ¿cómo sería de diferente el mundo? ¿Qué pasaría si la tradición científica de los antiguos griegos jonios hubiese sobrevivido y florecido? Hubiese sido preciso que muchas de las fuerzas sociales de la época fuesen distintas, entre ellas la creencia dominante de que la esclavitud era natural y justificada. Pero ¿qué hubiese sucedido si aquella luz que nacía en el Mediterráneo oriental hace 2500 años no se hubiese quedado parpadeante? ¿Qué pasaría si la ciencia y el método experimental y la dignidad de los oficios y las artes mecánicas hubiesen sido cultivados vigorosamente 2000 años antes de la Revolución Industrial? ¿Qué pasaría si se hubiese apreciado de modo más general el poder de este nuevo modo de pensar? A veces imagino que podríamos habernos ahorrado diez o veinte siglos. Quizás las contribuciones de Leonardo hubiesen llegado hace mil años y las de Albert Einstein hace quinientos años. Como es lógico en esta otra Tierra Leonardo y Einstein no habrían nacido nunca. Todo hubiese sido demasiado distinto. En cada eyaculación hay centenares de millones de células espermáticas, de las cuales sólo una puede fertilizar un óvulo y producir un miembro de la siguiente generación de seres humanos. Pero el decidir qué esperma conseguirá fertilizar un óvulo depende de los factores más mínimos e insignificantes, tanto internos como externos. Habría bastado un cambio en una pequeña cosa hace 2500 años para que ninguno de nosotros estuviera aquí. Habría miles de millones de otras personas viviendo en nuestro lugar.

Sí el espíritu jonio hubiese vencido, creo que nosotros —un nosotros diferente, desde luego— estaríamos ya aventurándonos en las estrellas. Nuestras primeras naves de exploración a Alpha Centauri y a la Estrella de Barnard, a Sirio y a Tau Ceti habrían regresado haría ya mucho tiempo. Se estarían construyendo en órbita terrestre grandes flotas de transportes interestelares: naves sin tripulación de reconocimiento, naves de línea para inmigrantes, inmensas naves comerciales para surcar los mares del espacio. Sobre todas estas naves habría símbolos y escritura. Mirando más de cerca podríamos observar que el lenguaje era griego. Y quizás el símbolo en la proa de una de las primeras naves estelares sería un dodecaedro, con la inscripción: «Nave Estelar Teodoro del Planeta Tierra».

En la línea temporal de nuestro mundo las cosas han ido algo más lentas. No estamos listos aún para las estrellas. Pero quizás en un siglo o dos más, cuando todo el sistema solar esté explorado, habremos puesto también nuestro planeta en orden, y tendremos la voluntad, los recursos y el conocimiento técnico para ir a las estrellas. Habremos examinado ya desde grandes distancias la diversidad de otros sistemas planetarios, algunos muy parecidos al nuestro y algunos muy distintos. Sabremos qué estrellas tenemos que visitar. Nuestras máquinas y nuestros descendientes se adentrarán entonces por los años luz, hijos auténticos de Tales y de Aristarco, de Leonardo y de Einstein.

Todavía no sabemos seguro cuántos sistemas planetarios hay además del nuestro, pero parece que su abundancia es grande. En nuestra vecindad inmediata no hay uno solo sino en cierto sentido cuatro: Júpiter, Saturno y Urano disponen cada cual de un sistema de satélites que por sus tamaños relativos y el espaciamiento de las lunas se parecen mucho a los planetas que giran alrededor del Sol. Una extrapolación de las estadísticas de estrellas dobles cuya masa respectiva es muy dispar sugiere que casi todas las estrellas solitarias como el Sol deberían tener compañeros planetarios.

Ir a la siguiente página

Report Page