Cosmos

Cosmos


VIII. Viajes a través del espacio y el tiempo

Página 26 de 48

Al viajar a una velocidad próxima a la de la luz uno apenas envejece, pero los amigos y los parientes que se han quedado en casa siguen envejeciendo a su ritmo normal. ¡Qué diferencia pues entre una persona que vuelve de un viaje relativista y sus amigos, que han envejecido décadas, por ejemplo, mientras él apenas ha envejecido! Un viaje a velocidad próxima a la de la luz es una especie de elixir de la vida. Puesto que el tiempo va más lento a una velocidad cercana a la de la luz, la relatividad especial nos proporciona un medio para alcanzar las estrellas. ¿Pero es posible desde el punto de vista de la ingeniería práctica viajar a una velocidad próxima a la de la luz? ¿Es realizable una nave estelar?

Busto de Leonardo da Vinci (1452-1519) en el museo Leonardo, Vinci. (Foto del autor).

La Toscana no fue solamente la caldera donde se cocieron algunas de las ideas del joven Albert Einstein; fue también la patria de otro gran genio que vivió 400 años antes, Leonardo da Vinci, a quien le encantaba encaramarse a las colinas toscanas y contemplar la tierra desde gran altura, como si estuviera planeando como un pájaro. Fue él quien dibujó las primeras perspectivas aéreas de paisajes, ciudades y fortificaciones. Leonardo, entre sus muchos intereses y realizaciones pintura, escultura, anatomía, geología, historia natural, ingeniería militar y civil tenía una gran pasión: idear y fabricar una máquina que pudiese volar. Trazó dibujos, construyó modelos, fabricó prototipos de tamaño natural, pero ninguno de ellos funcionó. No existía en aquel entonces un motor suficientemente potente y ligero. Sin embargo, los diseños eran brillantes y animaron a los ingenieros de futuros tiempos. El mismo Leonardo quedó muy desanimado por estos fracasos. Pero no era culpa suya, porque estaba atrapado en el siglo quince.

Dos diseños de máquinas voladoras debidos a Leonardo. Izquierda: modelo de un helicóptero helical del Museo Leonardo, Vinci. Este diseño inspiró a Igor Sikorsky el desarrollo del moderno helicóptero. Derecha: página de los cuadernos de Leonardo, con el texto en su «escritura espejo», mostrando el diseño de un semiornitóptero en el cual el ala interior fija es un cuerpo ascensional aerodinámico y la punta del ala batía. Fue un cambio importante en relación a la idea inicial de Leonardo de que un vehículo más pesado que el aire necesitaba alas que batieran como las de un pájaro. Este diseño influyó en los planeadores suspendidos de Lilienthal de 1891-1896, que precedieron inmediatamente a los inventos de Wilbur y Orville Wright. El cuaderno fue escrito entre 1479 y 1500.

Sucedió un caso semejante en 1939 cuando un grupo de ingenieros que había tomado el nombre de Sociedad Interplanetaria Británica diseñó una nave para trasladar personas a la Luna, utilizando la tecnología de 1939. La nave no era en absoluto idéntica al diseño de la nave espacial

Apolo que llevó a cabo exactamente esta misión tres décadas después, pero sugería que algún día una misión a la Luna podía ser una posibilidad práctica de ingeniería.

Hoy en día disponemos de diseños preliminares de naves capaces de llevar personas a las estrellas. No está previsto que ninguna de estas naves parta directamente de la Tierra. Se trata de construirlas en una órbita terrestre, a partir de la cual zarparán hacia sus largos viajes interestelares. Uno de ellos recibió el nombre de Proyecto Orión, el de la constelación, recordando así que el objetivo último de la nave son las estrellas. Orión se movía impulsado por explosiones de bombas de hidrógeno, armas nucleares, contra una placa de inercia, proporcionando cada explosión una especie de puf puf, como si fuera una enorme canoa nuclear en el espacio. Orión parece totalmente práctico desde el punto de vista de su ingeniería. Por su misma naturaleza produciría grandes cantidades de desechos radiactivos, pero si se calculaba bien la misión esto sólo sucedería en las soledades del espacio interplanetario o interestelar. Orión se estuvo desarrollando seriamente en los Estados Unidos hasta la firma del tratado internacional que prohíbe hacer estallar armas nucleares en el espacio. Creo que fue una gran lástima. La nave espacial Orión es el mejor destino que puedo imaginar para las armas nucleares.

El proyecto Daedalus es un diseño reciente de la Sociedad Interplanetaria Británica. Para construirlo hay que disponer de un reactor nuclear de fusión: algo mucho más seguro y eficiente que las actuales centrales nucleares. Todavía no tenemos reactores de fusión, pero se confía en tenerlos en las próximas décadas. Orión y Daedalus podrían desplazarse a un diez por ciento de la velocidad de la luz. Un viaje a Alpha Centauri, a 4,3 años luz de distancia, precisaría de cuarenta y tres años, un plazo inferior a una vida humana. Estas naves no podrían ir a una velocidad suficientemente próxima a la de la luz para que se notara la dilatación temporal de la relatividad especial. Aunque hagamos proyecciones optimistas sobre el desarrollo de nuestra tecnología, no parece probable que Orión, Daedalus y otras naves de su ralea puedan construirse antes de la mitad del siglo veintiuno, aunque si lo deseáramos Orión se podría construir ahora.

Hay que encontrar algo distinto para poder emprender viajes más allá de las estrellas más próximas. Quizás Orión y Daedalus podrían servir de naves multigeneracionales, de modo que sólo llegarían a un planeta de otra estrella los descendientes remotos de los que partieron unos siglos antes. O quizás se descubra un sistema seguro de hibernar personas que permita congelar a los viajeros del espacio y despertarlos siglos después. Estas naves estelares no relativistas, por enormemente caras que sean, parecen en cambio de diseño, construcción y uso relativamente fácil en comparación con naves estelares que se desplacen a velocidades cercanas a las de la luz. Hay otros sistemas estelares accesibles a la especie humana, pero sólo después de grandes esfuerzos.

El vuelo espacial interestelar rápido con la velocidad de la nave aproximándose a la de la luz no es un objetivo para dentro de un siglo sino para dentro de mil o diez mil años. Pero en principio es posible. R. W. Bussard ha propuesto una especie de nave interestelar a reacción que va recogiendo la materia difusa, principalmente átomos de hidrógeno, que están flotando entre las estrellas, la acelera en un motor de fusión y la expulsa por detrás. El hidrógeno serviría tanto de combustible como de masa de reacción. Pero en el espacio profundo sólo hay un átomo en cada diez centímetros cúbicos aproximadamente, es decir en un volumen del tamaño de un racimo de uvas. Para que el reactor funcione se necesita un área frontal de recogida de centenares de kilómetros de diámetro. Cuando la nave alcanza velocidades relativistas, los átomos de hidrógeno se desplazarán en relación a la nave a una velocidad cercana a la de la luz. Si no se toman precauciones, adecuadas, la nave y sus pasajeros se freirán por la acción de estos rayos cósmicos inducidos. Una solución propuesta se basa en privar con un láser a los átomos interestelares de sus electrones y de este modo dejarlos eléctricamente cargados mientras están todavía a una cierta distancia; un campo magnético muy potente desviaría entonces a los átomos cargados hacia la pantalla de recogida y lejos del resto de la nave. El esfuerzo de ingeniería que esto supone es de una escala sin precedentes hasta ahora en la Tierra. Estamos hablando de motores del tamaño de pequeños mundos.

Naves estelares: Anteproyectos muy esquemáticos de tres diseños propuestos seriamente para el vuelo espacial interestelar. Los tres utilizan un tipo u otro de fusión nuclear. Orion está arriba, Daedalus al centro y el Bussard Ramjet al final. En principio sólo el Ramjet podría desplazarze a velocidad suficiente próxima a la de la luz para que fuera válida la dilatación temporal de la relatividad especial. El área de recogida efectiva, a la derecha, de materia interestelar tendría que ser mucho mayor de lo indicado. (Anteproyectos de diseños existentes por Rick Sternbach).

Tres proyectos de naves estelares: Orion (Theodore Taylor, Freeman Dyson y otros) arriba a la izquierda; Daedalus (Sociedad Interplanetaria Británica) arriba a la derecha; Ramjet Interestelar (R. W. Bussard y otros), debajo (Pinturas de Rick Sternbach).

Pero dediquemos un momento a pensar en esta nave. La Tierra nos atrae gravitatoriamente con una cierta fuerza, que si estamos cayendo experimentamos en forma de aceleración. Si caemos de un árbol —cosa que debió sucederles a muchos de nuestros antepasados protohumanos— bajaremos a plomo cada vez más de prisa y nuestra velocidad de caída aumentará en diez metros por segundo cada segundo. Esta aceleración que caracteriza a la fuerza de la gravedad que nos mantiene sobre la superficie de la Tierra, se llama 1g, donde g es la gravedad de la Tierra. Con aceleraciones de 1g nos sentimos a gusto; hemos crecido con 1g. Si viviéramos en una nave interestelar que pudiese acelerar a 1g, nos encontraríamos en un ambiente perfectamente natural. De hecho uno de los rasgos más importantes de la teoría general de la relatividad, teoría posterior debida a Einstein, es la equivalencia entre las fuerzas gravitatorias y las fuerzas que sentiríamos en una nave espacial en aceleración. Después de un año de estar en el espacio con una aceleración continua de 1g tendríamos una velocidad próxima a la de la luz: (0,01 km/seg2) x (3 x l07seg) = 3 x 105 km/seg.

Supongamos que una nave espacial acelera a 1g, acercándose cada vez más a la velocidad de la luz hasta el punto medio del viaje; y que luego se le da la vuelta y desacelera a 1g hasta llegar a su destino. Durante la mayor parte del viaje la velocidad sería muy próxima a la de la luz y el tiempo se haría enormemente lento. Un objetivo para una misión de cercanías y un sol con posibles planetas es la estrella de Barnard, situada a unos seis años luz de distancia. Se podría llegar a ella en unos ocho años medidos por el reloj de a bordo; al centro de la Vía Láctea, en veintiún años; M31, la galaxia de Andrómeda, en veintiocho años. No hay duda que quienes se quedaran en la Tierra verían las cosas de modo distinto. En lugar de veintiún años para llegar al centro de la Galaxia medirán un tiempo transcurrido de 30.000 años. Cuando volvamos a casa no quedarán muchos amigos para darnos la bienvenida. En principio un viaje así con los puntos decimales más próximos todavía a la velocidad de la luz nos permitiría dar la vuelta al universo conocido en unos cincuenta y seis años de tiempo de la nave. Regresaríamos a decenas de miles de millones de años en el futuro, y encontraríamos la Tierra convertida en un montón de ceniza y al Sol muerto. El vuelo espacial relativista hace el universo accesible a las civilizaciones avanzadas, pero únicamente a quienes participan en el viaje. No parece que haya ningún modo de conseguir que la información llegue a los que se quedaron en casa a una velocidad superior a la de la luz.

Es probable que los diseños de Orión, Daedalus y el Ramjet Bussard estén más alejados de la nave interestelar auténtica que algún día construiremos que los modelos de Leonardo de nuestros actuales transportes supersónicos. Pero si conseguimos no destruirnos creo que algún día nos aventuraremos hacia las estrellas. Cuando hayamos explorado todo nuestro sistema solar, nos harán señas los planetas de otras estrellas.

El viaje espacial y el viaje por el tiempo están relacionados. Podemos viajar rápido por el espacio porque viajamos rápido hacia el futuro. Pero, y del pasado, ¿qué? ¿Podemos volver al pasado y cambiarlo? ¿Podemos lograr que los hechos se desarrollen de modo distinto a lo que dicen los libros de historia? Nos estamos desplazando continuamente hacia el futuro a una velocidad de un día por día. Con naves espaciales relativistas podríamos ir hacia el futuro a mayor velocidad. Pero muchos físicos creen que un viaje al pasado es imposible. Según ellos, aunque dispusiéramos de un aparato capaz de ir hacia atrás en el tiempo, no podríamos hacer nada importante. Si alguien viaja al pasado e impide que sus padres se casen, evitará haber nacido, lo cual es en cierto modo una contradicción, porque es evidente que este alguien existe. Como sucede con la demostración de la irracionalidad de √2, o en la discusión de la simultaneidad en relatividad espacial, se trata de un argumento que permite dudar de la premisa porque la conclusión parece absurda.

Pero otros físicos proponen la posible coexistencia, una al lado de otra, de dos historias alternativas, dos realidades igualmente válidas: la que uno conoce y otra en la que uno no ha nacido nunca. Quizás el tiempo tiene muchas dimensiones potenciales, aunque estemos condenados a experimentar sólo una de ellas. Supongamos que pudiéramos ir al pasado y cambiarlo, persuadiendo por ejemplo a la reina Isabel para que no diera su apoyo a Cristóbal Colón.

Esto equivale a poner en marcha una secuencia diferente de acontecimientos históricos, que quienes hemos abandonado en nuestra línea temporal no llegarán a conocer nunca. Si fuese posible este tipo de viaje temporal podría existir en cierto modo cualquier historia alternativa imaginable.

La historia es en su mayor parte un haz complejo de hilos profundamente entretejidos, fuerzas sociales, culturales y económicas difíciles de desenredar. Los acontecimientos pequeños, impredecibles y casuales que en número incontable van fluyendo continuamente, no tienen a menudo consecuencias de largo alcance. Pero algunos acontecimientos, los que tienen lugar en intersecciones críticas o puntos de ramificación, pueden cambiar el aspecto de la historia. Puede haber casos en los que resulte posible provocar cambios profundos mediante ajustes relativamente triviales. Cuanto más lejos esté situado en el pasado este acontecimiento más poderosa podrá ser su influencia: porque el brazo de la palanca del tiempo se hace más largo.

Un virus de poliomielitis es un diminuto microorganismo. Cada día topamos con muchos de ellos. Pero por suerte es un hecho raro que nos infecten y provoquen esta temida enfermedad. Franklin D. Roosevelt, el presidente número treinta y dos de los Estados Unidos, tuvo la polio. Se trata de una enfermedad que deja lisiado y quizás esto hizo que Roosevelt sintiera una mayor compasión por los desvalidos; o quizás aumentó sus ansias de éxito. Si la personalidad de Roosevelt hubiese sido distinta, o si no hubiese tenido nunca la ambición de llegar a presidente de los Estados Unidos, es posible que la gran depresión de los años 1930, la segunda guerra mundial y el desarrollo de las armas nucleares hubiesen tenido un desenlace distinto. El futuro del mundo hubiese podido cambiar. Pero un virus es una cosa insignificante, que mide sólo una millonésima de centímetro. Apenas es nada.

Supongamos en cambio que nuestro viajero del tiempo hubiese convencido a la reina Isabel de que la geografía de Colón era errónea, de que según la estimación por Eratóstenes de la circunferencia de la Tierra Colón no podía alcanzar nunca el Asia. Es casi seguro que en unas pocas décadas otro europeo se habría presentado y habría zarpado hacia el Nuevo Mundo. Las mejoras en la navegación, el incentivo del comercio de las especias y la competencia entre las potencias europeas rivales hacían más o menos inevitable el descubrimiento de América. Como es lógico, hoy no existiría una nación llamada Colombia, ni el Distrito de Columbia ni Columbus, Ohio, ni la Universidad de Columbia en las Américas. Pero el curso general de la historia podría haber sido más o menos el mismo. Para poder afectar el futuro de modo profundo es probable que un viajero del tiempo tuviese que haber intervenido en un número determinado de acontecimientos cuidadosamente escogidos, a fin de cambiar el tejido de la historia.

Sello emitido coincidiendo con la Exposición Colombina de 1892, donde aparece Cristóbal Colón presentando sus argumentos geográficos y económicos a la reina Isabel. ¿Qué gran viaje de descubrimiento estará en marcha en el año 1992, cuando se cumpla el quinientos aniversario del descubrimiento de América por Colón?

Es una hermosa fantasía explorar estos mundos que nunca fueron. Si los visitáramos podríamos entender realmente cómo funciona la historia; la historia podría convertirse en una ciencia experimental. Si no hubiese vivido nunca una persona aparentemente decisiva por ejemplo Platón, o Pablo, o Pedro el Grande ¿cómo sería de diferente el mundo? ¿Qué pasaría si la tradición científica de los antiguos griegos jonios hubiese sobrevivido y florecido? Hubiese sido preciso que muchas de las fuerzas sociales de la época fuesen distintas, entre ellas la creencia dominante de que la esclavitud era natural y justificada. Pero ¿qué hubiese sucedido si aquella luz que nacía en el Mediterráneo oriental hace 2500 años no se hubiese quedado parpadeante? ¿Qué pasaría si la ciencia y el método experimental y la dignidad de los oficios y las artes mecánicas hubiesen sido cultivados vigorosamente 2000 años antes de la Revolución Industrial? ¿Qué pasaría si se hubiese apreciado de modo más general el poder de este nuevo modo de pensar? A veces imagino que podríamos habernos ahorrado diez o veinte siglos. Quizás las contribuciones de Leonardo hubiesen llegado hace mil años y las de Albert Einstein hace quinientos años. Como es lógico en esta otra Tierra Leonardo y Einstein no habrían nacido nunca. Todo hubiese sido demasiado distinto. En cada eyaculación hay centenares de millones de células espermáticas, de las cuales sólo una puede fertilizar un óvulo y producir un miembro de la siguiente generación de seres humanos. Pero el decidir qué esperma conseguirá fertilizar un óvulo depende de los factores más mínimos e insignificantes, tanto internos como externos. Habría bastado un cambio en una pequeña cosa hace 2500 años para que ninguno de nosotros estuviera aquí. Habría miles de millones de otras personas viviendo en nuestro lugar.

Sí el espíritu jonio hubiese vencido, creo que nosotros —un nosotros diferente, desde luego— estaríamos ya aventurándonos en las estrellas. Nuestras primeras naves de exploración a Alpha Centauri y a la Estrella de Barnard, a Sirio y a Tau Ceti habrían regresado haría ya mucho tiempo. Se estarían construyendo en órbita terrestre grandes flotas de transportes interestelares: naves sin tripulación de reconocimiento, naves de línea para inmigrantes, inmensas naves comerciales para surcar los mares del espacio. Sobre todas estas naves habría símbolos y escritura. Mirando más de cerca podríamos observar que el lenguaje era griego. Y quizás el símbolo en la proa de una de las primeras naves estelares sería un dodecaedro, con la inscripción: «Nave Estelar Teodoro del Planeta Tierra».

En la línea temporal de nuestro mundo las cosas han ido algo más lentas. No estamos listos aún para las estrellas. Pero quizás en un siglo o dos más, cuando todo el sistema solar esté explorado, habremos puesto también nuestro planeta en orden, y tendremos la voluntad, los recursos y el conocimiento técnico para ir a las estrellas. Habremos examinado ya desde grandes distancias la diversidad de otros sistemas planetarios, algunos muy parecidos al nuestro y algunos muy distintos. Sabremos qué estrellas tenemos que visitar. Nuestras máquinas y nuestros descendientes se adentrarán entonces por los años luz, hijos auténticos de Tales y de Aristarco, de Leonardo y de Einstein.

Todavía no sabemos seguro cuántos sistemas planetarios hay además del nuestro, pero parece que su abundancia es grande. En nuestra vecindad inmediata no hay uno solo sino en cierto sentido cuatro: Júpiter, Saturno y Urano disponen cada cual de un sistema de satélites que por sus tamaños relativos y el espaciamiento de las lunas se parecen mucho a los planetas que giran alrededor del Sol. Una extrapolación de las estadísticas de estrellas dobles cuya masa respectiva es muy dispar sugiere que casi todas las estrellas solitarias como el Sol deberían tener compañeros planetarios.

Todavía no podemos ver directamente los planetas de otras estrellas, porque son diminutos puntos de luz sumergidos en el brillo de sus soles locales. Pero estamos consiguiendo detectar la influencia gravitatoria de un planeta invisible sobre una estrella observada. Imaginemos una estrella así con un movimiento propio importante que durante décadas se va desplazando sobre el fondo de las constelaciones más distantes; y con un planeta grande, por ejemplo de la masa de Júpiter, cuyo plano orbital esté por casualidad alineado formando un ángulo recto con nuestra visual. Cuando el planeta oscuro está desde nuestra perspectiva a la derecha de la estrella, la estrella se verá arrastrada un poco a la derecha, y al revés si el planeta está a la izquierda. En consecuencia el curso de la estrella quedará alterado o perturbado y en lugar de ser una línea recta será una línea ondulada. Las interacciones complejas de las tres estrellas en el sistema de Alpha Centauri harían muy difícil la búsqueda de un compañero de poca masa. Incluso en el caso de la Estrella de Barnard la investigación es penosa, buscando desplazamientos microscópicos de posición sobre placas fotográficas expuestas en un telescopio a lo largo de décadas. Se han llevado a cabo dos intentos de este tipo para encontrar planetas alrededor de la Estrella de Barnard, y según algunos criterios ambos intentos han tenido éxito e indican la presencia de dos o más planetas de masa joviana moviéndose en una órbita (calculada por la tercera ley de Kepler) algo más cercana a su estrella de lo que Júpiter y Saturno están con respecto al Sol. Pero, por desgracia, los dos conjuntos de observaciones parecen mutuamente incompatibles. Es posible que se haya descubierto un sistema planetario alrededor de la Estrella de Barnard, pero para una demostración sin ambigüedades hay que esperar otros estudios.

Un mundo lunar y un planeta más prometedor para la vida alrededor de una estrella cerca de la nebulosa de la Cabeza de caballo, a 1500 años luz de distancia. La exploración de un sistema así sólo sería un objetivo posible para la humanidad si se desarrollaran naves espaciales capaces de desplazarse a una velocidad próxima a la de la luz. (Pintura de David Egge, 1978).

Están en desarrollo otros métodos para detectar planetas alrededor de las estrellas, entre ellos uno que consiste en ocultar artificialmente la luz deslumbradora de la estrella poniendo un disco enfrente de un telescopio espacial o bien utilizando el borde oscuro de la Luna como disco a propósito: de este modo la luz reflejada por el planeta ya no queda tapada por el brillo de la estrella próxima y emerge. En las próximas décadas debemos contar con respuestas definitivas y saber cuáles son de entre los centenares de estrellas más próximas las que tienen compañeros planetarios grandes.

En años recientes, las observaciones infrarrojas han revelado la presencia de un cierto número de nubes de gas y de polvo en forma de disco, probablemente preplanetarias, alrededor de algunas estrellas próximas. Mientras tanto algunos estudios teóricos provocativos han sugerido que los sistemas planetarios son una banalidad galáctica. Un conjunto de investigaciones con computadora ha examinado la evolución de un disco plano de gas y de polvo en condensación como los que se suponen que dan origen a estrellas y planetas. Se inyectan pequeñas masas de materia —las primeras condensaciones del disco— dentro de la nube a intervalos aleatorios.

Estas masas acumulan por acreción partículas de polvo a medida que se mueven. Cuando su tamaño es suficiente atraen también gravitatoriamente al gas, principalmente hidrógeno, de la nube. Cuando dos masas de estas chocan, el programa de la computadora las deja unidas. El proceso continúa hasta que todo el gas y el polvo se han gastado de este modo. Los resultados dependen de las condiciones iniciales, especialmente de la distribución de la densidad de gas y de polvo con la distancia al centro de la nube. Pero dentro de una gama de condiciones iniciales plausibles se generan sistemas planetarios —unos diez planetas, de tipo terrestre cerca de la estrella, de tipo joviano en el exterior— que presentan un aspecto semejante a los nuestros. En otras circunstancias no hay planetas, sólo una multitud de asteroides; o pueden generarse planetas jovianos cerca de la estrella; o un planeta joviano puede acumular tanto gas y polvo que se convierta en una estrella, originando un sistema estelar binario. Todavía es demasiado pronto para estar seguros, pero parece que podremos encontrar una espléndida variedad de sistemas planetarios por toda la Galaxia, y con una frecuencia elevada, porque creemos que todas las estrellas deben de proceder de estas nubes de gas y polvo. Puede haber un centenar de miles de millones de sistemas planetarios en la Galaxia esperando que los exploren.

Ninguno de estos mundos será idéntico a la Tierra. Unos cuantos serán acogedores; la mayoría nos parecerán hostiles. Muchos serán maravillosamente bellos. En algunos mundos habrá muchos soles en el cielo diurno, muchas lunas en los cielos de la noche, o tendrán grandes sistemas de anillos de partículas cruzando de horizonte a horizonte. Algunas lunas estarán tan próximas a su planeta que surgirán en lo alto de los cielos cubriendo la mitad del firmamento. Y algunos mundos tendrán como panorámica una vasta nebulosa gaseosa, los restos de una estrella normal que fue y ya no es. En todos estos cielos, ricos en constelaciones distantes y exóticas, habrá una débil estrella amarilla, quizás apenas visible a simple vista, quizás visible únicamente a través del telescopio: la estrella madre de una flota de transportes interestelares que explorarán esta diminuta región de la gran galaxia Vía Láctea.

Como hemos visto, los temas del espacio y del tiempo están interrelacionados. Los mundos y las estrellas nacen, viven y mueren como las personas. La vida de un ser humano se mide en décadas, la vida del Sol es cien millones de veces más larga. Comparados con una estrella somos algo efímero, como criaturas fugaces que viven toda su vida en el transcurso de un solo día. Desde el punto de vista de un ser efímero los seres humanos somos imperturbables, aburridos, casi totalmente inconmovibles, dando apenas una ligera indicación de que hacemos algo alguna vez. Desde el punto de vista de una estrella, un ser humano es un diminuto relampagueo, uno de los miles de millones de breves vidas que parpadean tenuemente sobre la superficie de una esfera extrañamente fría, anómalamente sólida, exóticamente remota, hecha de silicato y de hierro.

En todos estos mundos del espacio hay una secuencia de acontecimientos, hay hechos que determinarán sus futuros. Y en nuestro pequeño planeta, este momento de la historia es un punto crítico de bifurcación tan importante como la confrontación de los científicos jonios con los místicos hace 2500 años. Lo que hagamos con nuestro mundo en esta época se propagará a través de los siglos y determinará de modo eficaz el destino de nuestros descendientes y su suerte, si llega, entre las estrellas.

Un planeta sin aire en un sistema estelar binario. Todos los objetos proyectan dos sombras, antirrojo y antiazul (pintura de David Hardy). David A. Hardy, de El desafío de las estrellas (Rand McNally).

Un planeta en órbita alrededor de un cúmulo estelar globular. Pintura de Don Dixon. (© Don Dixon, 1978).

Un planeta hipotético alrededor de una binaria de contacto; las dos estrellas pierden sus atmósferas estelares en el espacio siguiendo la forma de una gran espiral que orbita a las dos estrellas (pintura de David Hardy). © David A. Hardy, de El desafío de las estrellas (Rand McNally).

Las Pléyades de noche desde una caverna de hielo en un hipotético planeta cercano. El cúmulo estelar de las Pléyades se formó recientemente, y por lo tanto se trata de un mundo muy joven. (Pintura de David Egge).

Ir a la siguiente página

Report Page