Cosmos

Cosmos


XI. La persistencia de la memoria

Página 34 de 48

C

a

p

í

t

u

l

o

X

I

L

A

P

E

R

S

I

S

T

E

N

C

I

A

D

E

L

A

M

E

M

O

R

I

A

Una vez determinados los destinos de Cielo y Tierra, habiendo recibido zanjas y canales su curso adecuado, establecidas ya las orillas del Tigris y del Éufrates, ¿qué nos queda por hacer?, ¿qué más tenemos que crear? Oh Anunaki, grandes dioses del cielo, ¿qué nos queda por hacer?

Narración asiria de la creación del hombre, 800 a. de C.

Cuando él, sea cual fuere de los dioses, hubo dispuesto ordenadamente de este modo y resuelto aquella masa caótica, y la hubo reducido, resuelta de este modo, a partes cósmicas, empezó moldeando la Tierra como una bola poderosa para que su forma fuera la misma por todos lados… Y para que ninguna región careciera de sus formas propias de vida animada, las estrellas y las formas divinas ocuparon el suelo del cielo, el mar correspondió a los peces relucientes para que fuera su hogar, la Tierra recibió a los animales y el aire móvil a los pájaros… Luego nació el Hombre:… todos los animales van con la cabeza baja y fijan su mirada en el suelo, pero él dio al Hombre un rostro levantado y le ordenó que estuviera erecto y que elevara sus ojos al cielo.

OVIDIO, Metamorfosis, siglo primero

EN LA GRAN OSCURIDAD CÓSMICA HAY incontables estrellas y planetas más jóvenes y más viejos que nuestro sistema solar. Aunque por ahora no podamos estar seguros de ello, los mismos procesos que provocaron la evolución de la vida y de la inteligencia en la Tierra tendrían que estar actuando en todo el Cosmos. Es posible que sólo en la galaxia Vía Láctea haya un millón de mundos habitados por seres muy diferentes de nosotros y mucho más avanzados. Saber muchas cosas no es lo mismo que ser inteligente; la inteligencia no es solamente información, sino también juicio, la manera de coordinar y hacer uso de la información. A pesar de todo, la cantidad de información a la que tenemos acceso es un índice de nuestra inteligencia. La medida, la unidad de información, es algo llamado bit (dígito binario). Es una respuesta sí o no a una pregunta no ambigua. Para determinar si una lámpara está encendida o apagada se necesita un único bit de información. Para designar una de las veintiséis letras del alfabeto latino se necesitan cinco bits (25 = 2 x 2 x 2 x 2 x 2 = 32, que es más que 26). El contenido de información verbal de este libro es algo inferior a diez millones de bits, 107. El número total de bits que caracteriza un programa de televisión de una hora de duración es de unos 1012. La información en forma de palabras e imágenes de los diferentes libros de todas las bibliotecas de la Tierra es de unos 1016 o 1017 bits.[70] No hay duda que mucha de esta información es redundante. Una cifra así calibra de modo basto lo que los hombres saben. Pero en otros lugares, en otros mundos, donde la vida ha evolucionado miles de millones de años antes que en la Tierra, quizás sepan 1020 bits o 1030, y no más información, sino una información significativamente distinta.

Consideremos un planeta raro entre estos millones de mundos habitados por inteligencias avanzadas, el único de su sistema con un océano superficial de agua líquida. En este rico medio ambiente acuático, viven muchos seres relativamente inteligentes: algunos con ocho apéndices para coger cosas, otros que se comunican entre sí actuando sobre un intrincado sistema de manchas brillantes y oscuras en sus cuerpos; incluso pequeños e inteligentes seres de tierra firme que hacen breves incursiones por el océano en naves de madera o de metal. Pero nosotros buscamos a las inteligencias dominantes, a los seres más maravillosos del planeta, los dueños sensibles y graciosos del océano profundo, a las grandes ballenas.

Son los animales más grandes[71] que hayan evolucionado nunca sobre el planeta Tierra, mucho mayores que los dinosaurios. Una ballena azul adulta puede tener treinta metros de longitud y pesar 150 toneladas. Muchas ballenas, especialmente las ballenas yubartas, son animales que pacen plácidamente, recorriendo vastos volúmenes de océano en búsqueda de los animales con que se apacientan; otros comen pescado y pequeños crustáceos. Las ballenas son unos recién llegados al océano. Hace sólo setenta millones de años sus antepasados eran mamíferos carnívoros que migraron por pasos lentos de la tierra al océano. Entre las ballenas las madres dan de mamar y se ocupan tiernamente de sus vástagos. Estos tienen una infancia larga durante la cual los adultos enseñan a los jóvenes. El juego es un pasatiempo típico. Todo esto es característico de los mamíferos, e importante para el desarrollo de seres inteligentes.

El mar es poco transparente. La vista y el olfato, que son muy útiles para los mamíferos en tierra, no sirven de mucho en las profundidades del océano. Los antepasados de las ballenas que contaban en estos sentidos para localizar una pareja o una cría o un predador no dejaron mucha descendencia. La evolución perfeccionó otro método que funciona maravillosamente bien y es un elemento esencial para entender a las ballenas: el sentido del sonido. Algunos sonidos de ballenas reciben el nombre de canciones, pero todavía ignoramos su naturaleza y significado reales. Ocupan una amplia banda de frecuencias, pasando muy por debajo del sonido más grave que el oído humano puede oír o detectar. Una canción típica de ballena dura quizás quince minutos; las más largas, una hora. A menudo se repite de modo idéntico, compás por compás, medida por medida, nota por nota. A veces un grupo de ballenas abandona sus aguas invernales en medio de una canción y seis meses más tarde vuelven y continúan exactamente en la nota correcta como si no hubiese habido interrupción. Las ballenas tienen muy buena memoria. Es más frecuente que al regresar haya cambiado la vocalización. Aparecen nuevas canciones en el

hit parade de los cetáceos.

Las «canciones» de la ballena yubarta registradas en un espectrógrafo de máquina. En cada línea el tiempo corre horizontalmente y la frecuencia del sonido va de las notas bajas a las notas altas, verticalmente. Las líneas casi verticales representan glissandos, siguiendo la escala musical de varias octavas. Estas grabaciones hidrofónicas fueron llevadas a cabo bajo el agua por F. Watlington, de la Estación Palisades Sofar, Bermudas, el 28 de abril de 1964. Roger Payne comenta: «Las canciones que grabamos en 1964 y en 1969 son tan diferentes como Beethoven de los Beatles». En su opinión la música (de ballenas) de los años sesenta era más bella que la de los setenta. (Cedido por la Asociación Americana para el Progreso de la Ciencia).

Con mucha frecuencia los miembros del grupo cantan juntos la misma canción. La pieza, por algún consenso mutuo, por algún sistema de composición colectiva, va cambiando de mes en mes, lentamente y de modo predecible. Estas vocalizaciones son complejas. Si enunciamos las canciones de la ballena yubarta como un lenguaje tonal, el contenido total de información, el número de bits de información de estas canciones es de unos 106 bits, el mismo contenido de información más o menos que la Ilíada o la Odisea. No sabemos de qué pueden hablar las ballenas o sus primos los delfines. No disponen de órganos de manipulación, no construyen obras de ingeniería, pero son seres sociales. Cazan, nadan, pescan, pacen, retozan, copulan, juegan, huyen de los predadores. Quizás tengan mucho de qué hablar.

El principal peligro de las ballenas es un recién llegado, un animal escalador que sólo recientemente y gracias a la tecnología se ha hecho competente en los océanos, un ser que se denomina a sí mismo humano. Durante el 99,99% de las historia de las ballenas, no había hombres dentro o sobre el océano profundo. Durante este período las ballenas crearon por evolución su extraordinario sistema de audiocomunicación. Las ballenas yubartas, por ejemplo, emiten sonidos muy altos a una frecuencia de unos veinte hertz, cerca de la octava más baja del teclado de un piano. (Un hertz es una unidad de frecuencia sonora que representa una onda de sonido, una cresta y un valle, entrando en nuestro oído cada segundo). Estos sonidos de tan baja frecuencia apenas son absorbidos en el océano. El biólogo norteamericano Roger Payne ha calculado que utilizando el canal de sonido del océano profundo, dos ballenas podrían comunicarse entre sí a veinte herz esencialmente en cualquier punto del mundo. Una podría estar a lo largo de la Plataforma de Hielo de Ross, en la Antártida, y comunicarse con otra en las Aleutianas. Quizás las ballenas durante la mayor parte de su historia han dispuesto de una red de comunicaciones global. Quizás cuando están separadas a 15.000 kilómetros de distancia sus vocalizaciones son canciones de amor, emitidas con toda la esperanza hacia la vastedad del piélago.

Durante decenas de millones de años estos seres enormes, inteligentes y comunicativos han evolucionado sin tener, de hecho, enemigos naturales. Luego el desarrollo del buque a vapor en el siglo diecinueve introdujo una siniestra fuente de polución sonora. A medida que los buques comerciales y militares se han hecho más abundantes, el ruido del fondo de los océanos, especialmente en la frecuencia de veinte hertz, se ha hecho perceptible. Las ballenas, que se comunicaban a través de los océanos, han tenido que experimentar dificultades cada vez mayores. La distancia a través de la cual podían comunicar tuvo que disminuir continuamente. Hace doscientos años, una distancia típica a través de la cual las yubartas podían comunicarse era quizás de 10.000 kilómetros. Hoy en día la cifra correspondiente es quizás de unos pocos centenares de kilómetros. ¿Saben las ballenas sus respectivos nombres? ¿Pueden reconocerse como individuos a base sólo de los sonidos? Hemos segregado a las ballenas de nosotros. Unos seres que se comunicaron de modo efectivo durante decenas de millones de años han quedado reducidos de modo efectivo al silencio.[72]

Y hemos hecho cosas aún peores, porque todavía persiste un tráfico con los cuerpos muertos de las ballenas. Hay hombres que cazan y sacrifican ballenas y venden los productos en el mercado para fabricar lápices de labios o lubricante industrial. Muchas naciones entienden que el asesinato sistemático de tales seres inteligentes es monstruoso, pero el tráfico continúa, promovido principalmente por el Japón, Noruega y la Unión Soviética. Los seres humanos, como especie, estamos interesados en comunicar con inteligencias extraterrestres. ¿No sería un buen principio mejorar la comunicación con las inteligencias terrestres, con otros seres humanos de culturas y lenguajes diferentes, con los grandes simios, con los delfines y especialmente con estos dueños inteligentes de las profundidades, las grandes ballenas?

Una ballena para poder vivir ha de saber hacer muchas cosas. Este conocimiento está almacenado en sus genes y en sus cerebros. La información genética explica cómo convertir el plancton en grasa de ballena, o cómo aguantar la respiración en una zambullida que la lleva a un kilómetro por debajo de la superficie. La información en los cerebros, la información aprendida incluye, por ejemplo, quién es tu madre, o el significado de la canción que estás escuchando ahora. La ballena, como todos los demás animales de la Tierra, tiene una biblioteca de genes y una biblioteca de cerebro.

El material genético de la ballena, como el material genético de los seres humanos, está hecho de ácidos nucleicos, estas moléculas extraordinarias, capaces de reproducirse a partir de los bloques constructivos químicos que las envuelven y de convertir la información hereditaria en acción. Por ejemplo, una enzima de ballena, idéntica a la que tenemos en cada célula de nuestro cuerpo, se llama hexoquinasa, el primero de más de dos docenas de pasos mediados por enzimas y necesarios para convertir una molécula de azúcar obtenido del plancton de la dieta de la ballena en un poco de energía: quizás una contribución a una única nota de baja frecuencia en la música de la ballena.

La información almacenada en la doble hélice del ADN de una ballena o de un hombre o de cualquier otra bestia o planta de la Tierra está escrita en un lenguaje de cuatro letras: los cuatro tipos distintos de nucleótidos, los componentes moleculares que forman el ADN. ¿Cuántos bits de información contiene el material hereditario de formas de vida distintas? ¿Cuántas respuestas sí/no a las diversas preguntas biológicas están escritas en el lenguaje de la vida? Un virus necesita unos 10.000 bits, equivalentes aproximadamente a la cantidad de información de esta página. Pero la información vírica es simple, extraordinariamente compacta y eficiente. Para leerla hay que prestar mucha atención. Son las instrucciones que necesita para infectar otros organismos y para reproducirse: las únicas cosas que los virus son capaces de hacer. Una bacteria utiliza aproximadamente un millón de bits de información, unas cien páginas impresas. Las bacterias tienen que hacer bastantes más cosas que los virus. Al contrario que los virus no son parásitas completas. Las bacterias tienen que ganarse la vida. Y una ameba unicelular que nada libremente es mucho más sofisticado; tiene unos cuatrocientos millones de bits en su ADN, y se precisarían unos ochenta volúmenes de quinientas páginas para hacer otra ameba.

Una ballena o un ser humano necesitan unos cinco mil millones de bits. Si escribiéramos, por ejemplo en inglés, los 5 x 109 bits de información de nuestra enciclopedia de la vida en el núcleo de cada una de nuestras células llenarían un millar de volúmenes. Cada una de nuestras cien billones de células contiene una biblioteca completa con las instrucciones necesarias para hacer todas nuestras partes. Cada célula de nuestro cuerpo proviene, por sucesivas divisiones celulares, de una única célula, un óvulo fertilizado generado por nuestros padres. Cada vez que esta célula se dividió en los numerosos pasos embriológicos recorridos para fabricarnos, el conjunto original de instrucciones genéticas fue duplicado con gran fidelidad. De este modo las células de nuestro hígado tienen algún conocimiento no utilizado sobre la manera de fabricar nuestras células óseas, y al revés. La biblioteca genética contiene todo lo que nuestro cuerpo sabe hacer por sí mismo. La antigua información está escrita con un detalle exhaustivo, cuidadoso, redundante: cómo reír, cómo estornudar, cómo caminar, cómo reconocer formas, cómo reproducirse, cómo digerir una manzana. Las instrucciones de los primeros pasos en la digestión del azúcar de una manzana, si estuviesen expresados en el lenguaje de la química, tendrían el aspecto del esquema de las páginas 274 y 275.

El proceso necesario para comerse una manzana es inmensamente complicado. De hecho, si tuviese que sintetizar todas mis enzimas, si tuviera que recordar y dirigir

conscientemente todos los pasos necesarios para sacar energía de la comida, probablemente moriría de hambre. Pero incluso las bacterias hacen una glucólisis anaeróbica, gracias a la cual las manzanas se pudren: hora del almuerzo para los microbios. Ellos, nosotros y todos los seres intermedios poseemos muchas instrucciones genéticas similares. Nuestras bibliotecas genéticas separadas tienen muchas cosas en común, lo cual es otro recordatorio de nuestra común herencia evolutiva. Nuestra tecnología sólo puede duplicar una diminuta fracción de la intrincada bioquímica que nuestros cuerpos llevan a cabo sin esfuerzo: apenas hemos empezado a estudiar estos procesos. Sin embargo, la evolución ha dispuesto de miles de millones de años de práctica. El ADN lo sabe.

Pero supongamos que lo que tuviésemos que hacer fuese tan complicado que fueran insuficientes incluso varios miles de millones de bits de información. Supongamos que el medio ambiente estuviese cambiando tan rápidamente que la enciclopedia genética precodificada que sirvió perfectamente hasta entonces ya no fuera del todo adecuada. En este caso no sería suficiente ni una biblioteca genética de 1000 volúmenes. Es por esto que tenemos cerebros.

Como todos nuestros órganos el cerebro ha evolucionado, ha aumentado su complejidad y su contenido informativo a lo largo de millones de años. Su estructura refleja todas las fases por las que ha pasado. El cerebro evolucionó de dentro a fuera. En lo hondo está la parte más antigua, el tallo encefálico, que dirige las funciones biológicas básicas, incluyendo los ritmos de la vida, los latidos del corazón y la respiración. Según un concepto provocativo de Paul MacLean, las funciones superiores del cerebro evolucionaron en tres fases sucesivas. Coronando el tallo encefálico está el complejo R, la sede de la agresión, del ritual, de la territorialidad y de la jerarquía social, que evolucionó hace centenares de millones de años en nuestros antepasados reptilianos. En lo profundo de nuestro cráneo hay algo parecido al cerebro de un cocodrilo. Rodeando el complejo R está el sistema límbico del cerebro de los mamíferos, que evolucionó hace decenas de millones de años en antepasados que eran mamíferos pero que todavía no eran primates. Es una fuente importante de nuestros estados de ánimo y emociones, de nuestra preocupación y cuidado por los jóvenes.

Y finalmente en el exterior, viviendo en una tregua incómoda con los cerebros más primitivos situados debajo, está la corteza cerebral, que evolucionó hace millones de años en nuestros antepasados primates. La corteza cerebral, donde la materia es transformada en consciencia, es el punto de embarque de todos los viajes cósmicos. Comprende más de las dos terceras partes y es el reino de la intuición y del análisis crítico. Es aquí donde tenemos ideas e inspiraciones, donde leemos y escribimos, donde hacemos matemáticas y componemos música. La corteza regula nuestras vidas conscientes. Es lo que distingue a nuestra especie, la sede de nuestra humanidad. La civilización es un producto de la corteza cerebral.

La biblioteca del cerebro: tres perspectivas del cerebro humano, que almacena quizás cien billones de bits de información en una masa de unos 1400 gramos. La fotografía izquierda muestra los dos hemisferios de la corteza cerebral, conectados por un ancho haz de fibras nerviosas. Las circunvoluciones en la corteza cerebral sirven para aumentar la superficie del cerebro dentro de un volumen fijo. Al centro hay una perspectiva de la base del cerebro del hombre. La corteza cerebral es una parte tan importante del cerebro que resulta parcialmente visible incluso en esta perspectiva: porciones de los lóbulos frontal y temporal en la parte superior de esta fotografía. Los componentes cerebrales más visibles aquí son los más primitivos: los que controlan el ritmo cardíaco, la temperatura corporal, el tacto, el dolor y cosas semejantes. A la derecha vemos una perspectiva oblicua. Incluso con esta orientación el complejo R —que rodea el tallo encefálico— y el sistema límbico quedan ocultos en gran parte en el interior del cerebro. (Fotografías de estudio de Fried, Paul y Scheibel. Fotografiados por Peter Duong. Cedidas por Arnold Scheibel, Instituto de Investigación del Cerebro, UCLA).

El lenguaje del cerebro no es el lenguaje del ADN de los genes. Lo que sabemos está ahora codificado en células llamadas neuronas: elementos de conexión electroquímica, microscópicos, en general de unas centésimas de milímetro de diámetro. Cada uno de nosotros tiene quizás un centenar de miles de millones de neuronas, cifra comparable al número de estrellas en la galaxia Vía Láctea. Muchas neuronas tienen miles de conexiones con sus vecinas. Hay aproximadamente cien billones, 1014, de estas conexiones en la corteza del cerebro humano.

Charles Sherrington imaginó las actividades de la corteza cerebral al despertar:

[La corteza] se convierte ahora en un campo chispeante de puntos de luz destellando rítmicamente con trenes de chispas que se desplazan afanosamente por todas partes. El cerebro se está despertando y con él retorna la mente. Es como si la Vía Láctea iniciase alguna danza cósmica. [La corteza] se transforma rápidamente en un telar encantado donde millones de lanzaderas veloces tejen una forma en disolución, siempre una forma con sentido, pero nunca permanente, una armonía de subformas desplazándose. Ahora, a medida que el cuerpo se despierta, subformas de esta gran armonía de actividad descienden hacia las rutas no iluminadas del [cerebro inferior].

Rosarios de chispas destellantes y en movimiento conectan sus enlaces. Esto significa que el cuerpo se ha levantado y se está enfrentando con su día de vigilia.

Incluso en el sueño el cerebro está pulsando, palpitando y destellando con el complejo negocio de la vida humana: soñar, recordar, imaginar cosas. Nuestros pensamientos, visiones y fantasías poseen una realidad física. Si nos encogiéramos al nivel de las neuronas, podríamos presenciar formas elaboradas, intrincadas y evanescentes. Una podría ser la chispa de un recuerdo o el olor de lilas en un camino campestre de nuestra infancia. Otra podría ser un ansioso boletín enviado a todos los puntos: ¿Dónde he dejado mis llaves?

Un cúmulo de neuronas en el cerebro humano. La amplificación de esta microfotografía electrónica de rastreo es de 15.000 aumentos. La biblioteca cerebral se almacena, se procesa y se consulta en estas conexiones neurónicas. (Fotografías de estudio de Fried, Paul y Scheibel. Fotografiados por Peter Duong. Cedidas por Arnold Scheibel, Instituto de Investigación del Cerebro, UCLA).

Hay muchos valles en las montañas de la mente, circunvoluciones que aumentan mucho la superficie disponible en la corteza cerebral para almacenar información en un cráneo de tamaño limitado. La neuroquímica del cerebro es asombrosamente activa, son los circuitos de una máquina más maravillosa que todo lo que han inventado los hombres. Pero no hay pruebas de que su funcionamiento se deba a algo más que a las 1014 conexiones neurales que construyen una arquitectura elegante de la consciencia. El mundo del pensamiento está dividido más o menos en dos hemisferios. El hemisferio derecho de la corteza cerebral se ocupa principalmente del reconocimiento de formas, la intuición, la sensibilidad, las intuiciones creadoras. El hemisferio izquierdo preside el pensamiento racional, analítico y crítico. Estas son las fuerzas duales, las oposiciones esenciales que caracterizan el pensamiento humano. Proporcionan conjuntamente los medios tanto para generar ideas como para comprobar su validez. Existe un diálogo continuo entre los dos hemisferios canalizado a través de un haz inmenso de nervios, el cuerpo calloso, el puente entre la creatividad y el análisis, dos elementos necesarios para comprender el mundo.

El contenido de información del cerebro humano expresado en bits es probablemente comparable al número total de conexiones entre las neuronas: unos cien billones (1014) de bits. Si por ejemplo escribiéramos en inglés esta información llenaría unos veinte millones de volúmenes, como en las mayores bibliotecas del mundo. En el interior de la cabeza de cada uno de nosotros hay el equivalente a veinte millones de libros. El cerebro es un lugar muy grande en un espacio muy pequeño. La mayoría de los libros del cerebro están en la corteza cerebral. En el sótano están las funciones de las que dependían principalmente nuestros antepasados remotos: agresión, crianza de los hijos, miedo, sexo, la voluntad de seguir ciegamente a los líderes. Algunas de las funciones cerebrales superiores lectura, escritura, lenguaje parecen localizadas en lugares concretos de la corteza cerebral. En cambio las memorias están almacenadas de modo redundante en muchos puntos. Si existiera la telepatía, una de sus maravillas sería la oportunidad de leer los libros de las cortezas cerebrales de nuestros seres queridos. Pero no hay pruebas seguras de la telepatía, y la comunicación de este tipo de información continúa siendo tarea de artistas y escritores.

El cerebro hace mucho más que recordar. Compara, sintetiza, analiza, genera abstracciones. Tenemos que inventar muchas más cosas de las que nuestros genes pueden conocer. Por esto la biblioteca del cerebro es unas diez mil veces mayor que la biblioteca de los genes. Nuestra pasión por aprender, evidente en el comportamiento de cualquier bebé, es la herramienta de nuestra supervivencia. Las emociones y las formas ritualizadas de comportamiento están incrustadas profundamente en nosotros. Forman parte de nuestra humanidad. Pero no son

característicamente humanas. Muchos otros animales tienen sentimientos. Lo que distingue a nuestra especie es el pensamiento. La corteza cerebral es una liberación. Ya no necesitamos estar encerrados en las formas de comportamiento heredadas genéticamente de las lagartijas y los babuinos. Cada uno de nosotros es responsable en gran medida de lo que se introduce en nuestro cerebro, de lo que acabamos valorando y sabiendo cuando somos adultos. Sin estar ya a merced del cerebro reptiliano, podemos cambiarnos a nosotros mismos.

La mayoría de las grandes ciudades del mundo han ido creciendo de cualquier modo, poco a poco, respondiendo a las necesidades del momento; muy raramente se trata de una ciudad planeada para el futuro remoto. La evolución de una ciudad es como la evolución del cerebro: se desarrolla a partir de un pequeño centro y crece y cambia lentamente, dejando que continúen funcionando muchas partes antiguas. La evolución no dispone de sistemas para derribar el interior antiguo del cerebro a causa de sus imperfecciones y sustituirlo por algo de fabricación más moderna. El cerebro ha de funcionar durante la renovación. Por esto el tallo encefálico está rodeado por el complejo R, luego por el sistema límbico y finalmente por la corteza cerebral. Las partes viejas están encargadas de demasiadas funciones fundamentales para que puedan ser reemplazadas. Continúan pues funcionando, jadeantes, pasadas de moda y a veces contraproducentemente, pero son una consecuencia necesaria de nuestra evolución.

En la ciudad de Nueva York la disposición de muchas de las calles importantes data del siglo diecisiete, la bolsa del siglo dieciocho, las conducciones de agua del diecinueve, la red de energía eléctrica del veinte. La disposición podría ser más eficiente si todos los servicios cívicos estuvieran construidos en paralelo y fueran sustituidos periódicamente (por este motivo los incendios desastrosos las grandes conflagraciones de Londres y de Chicago por ejemplo a veces constituyen una ayuda para la planificación urbana). Pero la lenta acumulación de nuevas funciones permite que la ciudad funcione de modo más o menos continuo a lo largo de los siglos. En el siglo diecisiete se pasaba con transbordador de Brooklyn a Manhattan a través del río Este. En el siglo diecinueve se dispuso de la tecnología necesaria para construir un puente colgante sobre el río. Se construyó precisamente donde había la terminal del transbordador, porque la ciudad era propietaria del terreno y porque había ya rutas urbanas principales que convergían sobre el servicio preexistente de transbordador. Más tarde, cuando fue posible construir un túnel debajo del río, también se construyó en el mismo lugar por idénticos motivos, y también porque durante la construcción del puente se habían instalado pequeños precursores de túneles, luego abandonados, los llamados

caissons. Este aprovechamiento y reestructuración de sistemas previos para nuestros objetivos se parece mucho al sistema seguido por la evolución biológica.

Ir a la siguiente página

Report Page