Схемы применения конденсаторов

Схемы применения конденсаторов

Схемы применения конденсаторов




Скачать файл - Схемы применения конденсаторов


























Конденсатор является пассивным электронным компонентом. Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами из-за намотки. Ёмкость конденсатора измеряется в фарадах. Первые конденсаторы, состоящие из двух проводников, разделенных непроводником диэлектриком , упоминаемые обычно как конденсатор Эпинуса или электрический лист, были созданы ещё раньше \\\\\\\\\\\\\\\[3\\\\\\\\\\\\\\\]. Конденсатор является пассивным электронным компонентом \\\\\\\\\\\\\\\[4\\\\\\\\\\\\\\\]. В простейшем варианте конструкция состоит из двух электродов в форме пластин называемых обкладками , разделённых диэлектриком , толщина которого мала по сравнению с размерами обкладок см. Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь происходит зарядка или перезарядка конденсатора , по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения. С точки зрения метода комплексных амплитуд конденсатор обладает комплексным импедансом. Резонансная частота конденсатора равна. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной. Конденсатор может накапливать электрическую энергию. В России для условных графических обозначений конденсаторов на схемах рекомендуется использовать ГОСТ 2. При обозначении номинала ёмкости в других единицах указывают единицу измерения. Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах В или киловольтах кВ. Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24 , то есть на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском разбросом перекрывали всю декаду. Основной характеристикой конденсатора является его ёмкость , характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы ионисторы с ёмкостью до десятков фарад. Эта формула справедлива, лишь когда d намного меньше линейных размеров пластин. Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею. Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади. При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы, так как от источника питания они поступают только на внешние электроды, а на внутренних электродах они получаются только за счёт разделения зарядов, ранее нейтрализовавших друг друга. Общая ёмкость батареи последовательно соединённых конденсаторов равна. Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения. Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя. Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита. Особенно важен этот параметр при использовании конденсатора в качестве накопителя энергии, с последующим мгновенным её высвобождением, например, в пушке Гаусса. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. Эксплуатационное напряжение на конденсаторе должно быть не выше номинального. Многие конденсаторы с оксидным диэлектриком электролитические функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения актуально для импульсных устройств. В современных компьютерах перегрев конденсаторов частая причина выхода их из строя вследствие близкого расположения с источниками тепла, например,рядом с радиатором охлаждения. Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают вышибной предохранительный клапан или выполняют надсечку корпуса часто её можно заметить в виде креста или в форме букв X, K или Т на торце цилиндрического корпуса, иногда, на больших конденсаторах, она покрыта пластиком. При повышении внутреннего давления вышибается пробка клапана или корпус разрушается по насечке, пары электролита выходят в виде едкого газа и, даже, брызг жидкости. При этом разрушение корпуса конденсатора происходит без взрыва, разбрасывания обкладок и сепаратора. Старые электролитические конденсаторы выпускались в герметичных корпусах и в конструкции их корпусов не предусматривалась взрывобезопасность. Скорость разлёта осколков при взрыве корпуса устаревших конденсаторов может быть достаточной для того, чтобы травмировать человека. В отличие от электролитических, взрывоопасность оксиднополупроводниковых танталовых конденсаторов связана с тем, что такой конденсатор фактически представляет собой взрывчатую смесь: При пробое конденсатора или при его случайной переполюсовке выделившееся при протекании тока тепло инициирует реакцию между данными компонентами, протекающую в виде сильной вспышки с хлопком, что сопровождается разбрасыванием искр и осколков корпуса. Сила такого взрыва довольно велика, особенно у крупных конденсаторов, и способна повредить не только соседние радиоэлементы, но и плату. При тесном расположении нескольких конденсаторов возможен прожог корпусов соседних конденсаторов, что приводит к одновременному взрыву всей группы. Реальные конденсаторы, помимо ёмкости, обладают также собственными последовательным и параллельным сопротивлением и индуктивностью. С достаточной для практики точностью, эквивалентную схему реального конденсатора можно представить как показано на рисунке, где все двухполюсники подразумеваются идеальными. Из-за тока утечки, протекающего через слой диэлектрика между обкладками и по поверхности диэлектрика, предварительно заряженный конденсатор с течением времени теряет заряд саморазряд конденсатора. Часто, в спецификациях на конденсаторы, сопротивление утечки определяют через постоянную времени T саморазряда конденсатора, которая численно равна произведению ёмкости на сопротивление утечки:. Хорошие конденсаторы с полимерными и керамическими диэлектриками имеют постоянные времени саморазряда достигающие многих сотен тысяч часов. Эквивалентное последовательное сопротивление ЭПС англ. ESR , внутреннее сопротивление обусловлено, главным образом, электрическим сопротивлением материала обкладок и выводов конденсатора и контакта -ов между ними, а также учитывает потери в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор, вследствие поверхностного эффекта. В большинстве практических случаев этим параметром можно пренебречь, но, иногда напр. В электролитических конденсаторах, где один из электродов является электролитом , этот параметр при эксплуатации со временем деградирует, вследствие испарения растворителя из жидкого электролита и изменения его химического состава, вызванного взаимодействием с металлическими обкладками, что происходит относительно быстро в низкокачественных изделиях см. Некоторые схемы например, стабилизаторы напряжения критичны к диапазону изменения ЭПС конденсаторов в своих цепях. Это связано с тем, что при проектировании таких устройств инженеры учитывают этот параметр в фазочастотной характеристике ФЧХ обратной связи стабилизатора. Существенное изменение со временем ЭПС применённых конденсаторов изменяет ФЧХ, что может привести к снижению запаса устойчивости контуров авторегулирования, и, даже, к самовозбуждению. Эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. Результатом этой распределенной паразитной индуктивности является превращение конденсатора в колебательный контур с характерной собственной частотой резонанса. Эта частота может быть измерена и обычно указывается в параметрах конденсатора либо в явном виде либо в виде рекомендованной максимальной рабочей частоты. Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. Тангенс угла потерь определяется отношением активной мощности P а к реактивной P р при синусоидальном напряжении определённой частоты. Термины добротности и тангенса угла потерь применяются также для катушек индуктивности и трансформаторов. Таким образом, изменение ёмкости от температуры при не слишком больших изменениях температуры выражается линейной функцией:. TKE применяется для характеристики конденсаторов с практически линейной зависимостью ёмкости от температуры. Однако ТКЕ указывается в спецификациях не для всех типов конденсаторов. Для конденсаторов, имеющих существенно нелинейную зависимость ёмкости от температуры и для конденсаторов с большими изменениями ёмкости от воздействия температуры окружающей среды в спецификациях нормируются относительное изменение ёмкости в рабочем диапазоне температур или в виде графика зависимости ёмкости от температуры. Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение на обкладках снова появится как если бы мы разрядили конденсатор не до нуля. Это явление получило название диэлектрическая абсорбция диэлектрическое поглощение. Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC -цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Подобный эффект можно наблюдать практически на всех типах диэлектриков. В электролитических конденсаторах он особенно ярок и является следствием химических реакций между электролитом и обкладками. У конденсаторов с твердым диэлектриком например, керамических и слюдяных эффект связан с остаточной поляризацией диэлектрика. Наименьшим диэлектрическим поглощением обладают конденсаторы с неполярными диэлектриками: Эффект зависит от времени зарядки конденсатора, времени закорочения, иногда от температуры. Количественное значение абсорбции принято характеризовать коэффициентом абсорбции , который определяется в стандартных условиях. Особое внимание в связи с эффектом следует уделять измерительным цепям постоянного тока: Это характерно для конденсаторов с пьезоэлектрическими диэлектриками. Пьезоэффект ведёт к возникновению электрических помех, в устройствах, где использованы такие конденсаторы при воздействии акустического шума или вибрации на конденсатор. Конденсаторы с металлизированным электродом бумажный и пленочный диэлектрик обладают важным свойством самовосстановления англ. Механизм самовосстановления заключается в отгорании металлизации электрода после локального пробоя диэлектрика посредством микродугового электрического разряда. Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические , пусковые и другие конденсаторы. Буквенная система распространяется на конденсаторы, разработанные до года. Для упрощения системы обозначений часто первую букву К пропускают, оставляя вторую и последующие \\\\\\\\\\\\\\\[10\\\\\\\\\\\\\\\]. В соответствии с новой цифровой системой маркировки конденсаторы делятся на группы по виду диэлектрика, назначению и варианту исполнения \\\\\\\\\\\\\\\[11\\\\\\\\\\\\\\\]. Материал из Википедии — свободной энциклопедии. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии , проверенной 15 мая ; проверки требуют 5 правок. У этого термина существуют и другие значения, см. Проверено 25 сентября Архивировано 23 августа года. Проверено 23 марта Архивировано 4 апреля года. Архивировано 27 марта года. Резистор Переменный резистор Подстроечный резистор Варистор Фоторезистор Конденсатор Переменный конденсатор Подстроечный конденсатор Катушка индуктивности Кварцевый резонатор Предохранитель Самовосстанавливающийся предохранитель Трансформатор Мемристор Бареттер. Диод Светодиод Фотодиод Полупроводниковый лазер Диод Шоттки Стабилитрон Стабистор Варикап Вариконд Магнитодиод Диодный мост Лавинный диод Лавинно-пролётный диод Туннельный диод Диод Ганна Транзистор Биполярный транзистор Полевой транзистор КМОП-транзистор Однопереходный транзистор Фототранзистор Составной транзистор Баллистический транзистор Интегральная схема Цифровая интегральная схема Аналоговая интегральная схема Аналого-цифровая интегральная схема Гибридная интегральная схема Тиристор Симистор Динистор Фототиристор Оптрон Резисторная оптопара Датчик Холла. Электронная лампа Электровакуумный диод Триод Маячковая лампа Тетрод Лучевой тетрод Пентод Гексод Гептод Пентагрид Октод Нонод Механотрон Клистрон Магнетрон Амплитрон Платинотрон Электронно-лучевая трубка Лампа бегущей волны Лампа обратной волны Тиратрон Кенотрон Игнитрон. Электронно-лучевая трубка ЖК-дисплей Светодиод Газоразрядный индикатор Вакуумно-люминесцентный индикатор Блинкерное табло Семисегментный индикатор Матричный индикатор Кинескоп. Микрофон Громкоговоритель Тензорезистор Пьезокерамический излучатель. Терморезистор Термопара Элемент Пельтье. Нет источников с мая Википедия: Статьи без источников тип: Статьи с утверждениями без источников более 14 дней Страницы, использующие волшебные ссылки ISBN. Навигация Персональные инструменты Вы не представились системе Обсуждение Вклад Создать учётную запись Войти. Пространства имён Статья Обсуждение. Просмотры Читать Текущая версия Править Править вики-текст История. В других проектах Викисклад. Эта страница последний раз была отредактирована 28 августа в Текст доступен по лицензии Creative Commons Attribution-ShareAlike ; в отдельных случаях могут действовать дополнительные условия. Свяжитесь с нами Политика конфиденциальности Описание Википедии Отказ от ответственности Разработчики Соглашение о cookie Мобильная версия. Подстроечный конденсатор переменной ёмкости. В основном разрабатывались для обеспечения очень больших ёмкостей для промышленного применения в цепях переменного тока, выдерживая при этом большие токи и высокие пиковые напряжения частотой силовой питающей сети. Ограничены низкой рабочей частотой, поскольку на высоких частотах имеют высокие диэлектрические потери. Бумага или её комбинация с ПЭТ. Разработаны для работы при постоянном токе для фильтрации, удвоения напряжения, предотвращения образования дуги, как проходные и разделительные конденсаторы. При наличии пульсаций требуют уменьшения рабочего напряжения согласно предоставленным производителем графикам. Пропитанная бумага широко использовалась в старых конденсаторах. В качестве пропитки использовался воск, масло или эпоксидная смола. Некоторые подобные конденсаторы до сих пор применяются для работы при высоком напряжении, но в большинстве случаев теперь вместо них используют плёночные конденсаторы. Большая гигроскопичность , из-за чего они поглощают влагу из воздуха даже при наличии пластикового корпуса и пропитки. Поглощённая влага ухудшает их характеристики, повышая диэлектрические потери и понижая сопротивление изоляции. Подходят только для слаботочных применений. Вместо них стали широко применяться металлизированные плёночные конденсаторы. Конденсаторная крафт-бумага , пропитанная касторовым маслом или схожей жидкостью с высокой диэлектрической постоянной, и пластинки из фольги. Разработаны для работы в импульсном режиме с высоким током разряда. Лучше переносят изменение полярности напряжения чем многие полимерные диэлектрики. Обычно применяются в импульсных лазерах, генераторах Маркса , для импульсной сварки, при электромагнитной формовке и иных задачах, требующих использования импульсов большой мощности. Имеют большой размер и вес. Их энергоёмкость значительно меньше чем у конденсаторов использующих полимерные диэлектрики. Не способны к самолечению. Отказ подобного конденсатора может быть катастрофичным из-за большого объёма накопленной энергии. Меньше чем бумажные или полипропиленовые конденсаторы со схожими характеристиками. Могут использовать полоски фольги, металлизированную плёнку или их комбинации. ПЭТ конденсаторы почти полностью заменили бумажные для задач, где требуется работа с прямым постоянным током. Температурная стабильность ниже чем у бумажных. Могут применяться при низкочастотном переменном токе, но непригодны при высокочастотном из-за чрезмерного нагрева диэлектрика. Высокое сопротивление изоляции, хорошая стабильность, малый тангенс угла потерь. Температурная стабильность ниже чем у бумажных конденсаторов. Также могут применяться только при низкочастотном переменном токе, так как при высоких частотах происходит сильный нагрев диэлектрика. Имеют лучшее сопротивление изоляции, тангенс угла потерь и диэлектрическую адсорбцию в сравнении с полистирольными конденсаторами. Могут выдерживать полное номинальное напряжение на сравнительно высоких температурах. Чрезвычайно низкий тангенс угла потерь, более высокая диэлектрическая прочность, чем у поликарбонатных и ПЭТ конденсаторов. Низкая гигроскопичность и высокое сопротивление изоляции. Плёнка совместима с технологией самовосстановления , повышающей надёжность. Могут работать на высоких частотах, в том числе при большой мощности, например, для индукционного нагрева часто вместе с водяным охлаждением , благодаря очень низким диэлектрическим потерям. При более высоких ёмкостях и рабочем напряжении, например от 1 до мкФ и напряжением до вольт переменного тока, могут применяться как пусковые для работы с некоторыми типами однофазных электрических моторов. Более чувствительны к повреждениям от кратковременных перенапряжений или переполюсовке чем пропитанные маслом бумажные конденсаторы. Отличные плёночные высокочастотные конденсаторы общего применения. Имеют отличную стабильность, высокую влагостойкость и малый отрицательный температурный коэффициент, позволяющий использовать их для компенсации положительного температурного коэффициента других компонентов. Идеальны для маломощных высокочастотных и прецизионных аналоговых задач. Очень низкие диэлектрические потери. Используются в критичных задачах. Большой размер из-за низкой диэлектрической постоянной, более высокая цена в сравнении с другими конденсаторами. Надёжные и значительно меньшие по размеру. Тонкая металлизация может использоваться для придания им свойства самовосстановления. Преимущества данных конденсаторов основаны на том, что их диэлектрик инертен. Он не изменяется со временем ни физически, ни химически, а также имеет хорошую температурную стабильность. Обладают очень высокой стойкостью к коронным разрядам. Без правильной герметизации подвержены влиянию влажности, что ухудшает их параметры. Высокая цена из-за редкости и высокого качества диэлектрика, а также ручной сборки. Стабильность и частотные характеристики лучше, чем у слюдяных. Очень надёжные, очень стабильные, стойкие к радиации. Смесь сложных соединений титанатов. Дешёвые, миниатюрные, обладают превосходными высокочастотными характеристиками и хорошей надёжностью. Предсказуемое линейное изменение ёмкости относительно температуры. Имеются изделия, выдерживающие до вольт. Диэлектрики, основанные на титанате бария. Миниатюрнее температурно-компенсированных конденсаторов из-за большей диэлектрической постоянной. Доступны для напряжений вплоть до вольт. Обладают меньшей температурной стабильностью, ёмкость значительно изменяется при различном приложенном напряжении. Огромное отношение ёмкости к объёму, недорогие, полярные. В основном применяются как сглаживающие и питающие конденсаторы в источниках питания. Высокие токи утечки, большое эквивалентное последовательное сопротивление и индуктивность ограничивают возможность использования их на высоких частотах. Имеют низкую температурную стабильность и плохие отклонения параметров. Максимальное напряжение около вольт. Большое отношение ёмкости к объёму, малый размер, хорошая стабильность, большой диапазон рабочих температур. Широко используются в миниатюрном оборудовании и компьютерах. Доступны как в полярном, так и неполярном исполнении. Твёрдотельные танталовые конденсаторы имеют намного лучшие характеристики по сравнению с имеющими жидкий электролит. Дороже алюминиевых электролитических конденсаторов. Максимальное напряжение ограничено планкой около 50 вольт. Взрываются при превышении допустимого тока, напряжения или скорости нарастания напряжения, а также при подаче напряжения неправильной полярности. Оксид алюминия , оксид тантала. Вместо традиционного жидкого электролита используется специальный токопроводящий органический полимер или полимеризованный органический полупроводник. ЭПС меньше чем у жидко-электролитических и слабо зависит от температуры. Рабочие напряжения до 35 В. Тонкий слой электролита и активированный уголь. Огромная ёмкость относительно объёма, маленький размер. Доступны номиналы в сотни фарад. Обычно используются для временного питания оборудования при замене батарей. Полярные, имеют низкое номинальное напряжение вольт на конденсаторную ячейку. Группы ячеек соединяются последовательно для повышения общего рабочего напряжения, при этом обязательно применение устройств для балансировки напряжений. Относительно высокая стоимость, высокое эквивалентное последовательное сопротивление малые разрядные токи , большие токи утечки. Литий-ионные конденсаторы обладают большей энергоёмкостью, сравнимой с батареями, безопаснее в сравнении с литий-ионными батареями, в которых начинается бурная химическая реакция при высокой температуре. По сравнению с ионисторами они имеют большее выходное напряжение. Удельная мощность у них сравнимa, но плотность энергии у Li-ion конденсаторов гораздо выше \\\\\\\\\\\\\\\[8\\\\\\\\\\\\\\\]. Вакуумные конденсаторы используют стеклянные или керамические колбы с концентрическими цилиндрическими электродами. Используются для мощных высоковольтных радиочастотных задач, таких как индукционный нагрев \\\\\\\\\\\\\\\[ источник не указан день \\\\\\\\\\\\\\\] , где даже малые потери приводят к чрезмерному нагреву самого конденсатора. При ограниченном токе искры могут обладать самовосстановлением.

Емкости и конденсаторы

Перевести деньги со счета на киви кошелек

Русский огород интернет магазин каталог осень 2017

Как подготовиться к вербальному тесту

Опоясывающий лишай на шее фото

Математическое ожидание случайной величины заданной законом распределения

Приглашение на выпускной бал своими руками

Схема автосервиса вид сверху

Report Page