Проблема автоматизации систем

Проблема автоматизации систем

Проблема автоматизации систем




Скачать файл - Проблема автоматизации систем


























В таком случае, пожалуйста, повторите заявку. Термин 'автоматизация проектирования' понимается весьма широко: Объектами проектирования могут быть и технические системы, такие, как самолет, ракетный комплекс, корабль, и народнохозяйственные, экономический системы, например системы обустройства крупных нефтяных или газовых месторождений, использования бассейнов, рек и т. Системный анализ очень широк, и слова 'автоматизация проектирования' призваны его несколько сузить. Этот термин сегодня все же охватывает очень много различных по своему содержанию понятий. Среди них есть и чисто технологические: Центральным рассматриваемым здесь вопросом является проблема автоматизации начального этапа, так называемого аванпроектирования. В этой проблеме основное наше внимание будет сосредоточено на выборе альтернативных вариантов при завязке проекта или создании генеральной схемы народнохозяйственного комплекса. Эта проблема является, вероятно, не только наиболее трудной, но и узловой проблемой проектирования. Сложность используемой и, главным образом, создающейся техники, сложность используемых технологий, транспортных и производственных связей непрерывно растет. В этом и состоит особенность эпохи развития производственной деятельности, которую обычно называют эпохой научно-технической революции. Конструкции, которые создают инженеры, все в большей степени используют знания, добываемые в смежных науках. Объединение радиоэлектроники, тепловых процессов, газовой динамики и многого другого при создании одной конструкции является типичным для современного энергетического машиностроения, ракетостроения, самолетостроения. Резкое усложнение всевозможных производственных связей, технологий, переход к новым материалам качественно усложняют работу проектировщика производственного комплекса, в результате чего его сегодняшняя деятельность качественно непохожа на проектную работу пятидесятилетней давности. Поскольку физиологические возможности человека ограничены, а сложность создаваемых конструкций непрерывно растет, то очевидно, что однажды этот тезис перестает быть справедливым. В последние десятилетия мы начинаем все чаще сталкиваться с ситуациями, когда главный конструктор или руководитель проекта уже не может эффективно вмешиваться в процесс проектирования. Из творца, создателя конструкции он превращается, в лучшем случае, в хорошего администратора. Поэтому на повестку дня выдвигается проблема принципиального изменения всей технологии проектирования - проблема автоматизации проектирования. Ее особенность - широкое использование современных способов обработки информации и представления ее в таком виде, который позволил бы конструктору, проектировщику до конца использовать свои творческие возможности. В последние годы этой проблеме уделяется все больше и больше внимания, причем такое явление характерно для всех индустриально развитых стран, создающих сложные образцы техники и реализующих проекты сложнейших народнохозяйственных комплексов. Постепенно автоматизация проектирования стала одной из областей наиболее перспективного использования вычислительной техники и методов междисциплинарных исследований процессов разной физической природы. Сложный проект требует расчленения процесса проектирования на проектирование отдельных подсистем и агрегатов, разделения обязанностей между различными конструкторами, проектировщиками и исследователями-расчетчиками. Такое положение возникло уже давно: Но расчленение проблемы необходимо предполагает и обратный процесс-процесс объединения, согласования характеристик отдельных частей системы, синтеза, который дает возможность представить конструкцию в целом, оценить ее разнообразные качества и соответствие замыслу. Расчленение процесса проектирования поначалу не вызывало проблем. Возьмем, например, такую систему как, самолет. Проектирование планера естественным образом отличается от выбора и проектирования двигателя. Аэродинамические и прочностные расчеты делают представители различных профессий и т. Такая же ситуация наблюдалась всюду. И всюду постепенно возникали традиционные формы разделения труда. Долгое время и процесс синтеза проекта также не вызывал особых проблем: Но с течением времени все чаще эти традиционные методы проектирования стали давать сбои. Прежде всего, начали недопустимо удлиняться сроки проектирования. Но это было бы еще полбеды. Хуже то, что на испытания стали поступать конструкции, все менее и менее соответствующие замыслу, и у конструктора до начала испытаний не оказывалось возможности достаточно хорошо проверить, насколько созданные им машина или технологический комплекс соответствует замыслу. В результате - неизбежные переделки, резкое удорожание конструкций и удлинение сроков реализации замысла до десятилетий. А это означает, что в вводится конструкция или технология уже устаревшая, отвечающая техническому уровню минимум десяти-двадцатилетней давности. Анализируя эти явления, мы убеждаемся в том, что основные трудности связаны с синтезом, с увязкой всего многообразия особенностей будущей конструкции. Эти трудности растут экспоненциально вместе с ростом размерности, то есть количества параметров, которые определяют конструкцию. Квалификация проектировщиков здесь мало чем может помочь: Возникновение и формирование концепций автоматизированного проектирования происходило по следующей схеме. Сначала начали автоматизировать чертежные работы - эту очень трудоемкую часть любого процесса проектирования. Они, конечно, оправдали затраченные средства. Однако ничего принципиально улучшающего проект или ускоряющего его окончание они не внесли, да и не могли внести. Одновременно шло широкое внедрение в практику инженерных расчетов методов машинной математики. Эти методы существенно усовершенствовали разнообразные процедуры проектных расчетов, свели к минимуму возможные ошибки, повысили общую культуру проектирования, однако также не привели к какому-либо существенному сокращению сроков проектирования. Надо заметить, что с использованием ЭВМ для проведения инженерных и плановых расчетов были связаны большие надежды. Но они во многом не оправдались. Конечно, в этом была вина не ЭВМ, а специалистов, которые еще не научились их использовать. С их помощью быстрее и точнее решались отдельные инженерные задачи, но серьезно повлиять на судьбу проекта, заметно ускорить окончание работы и улучшить ее качество они еще не могли. Следующий этап - создание автоматизированных рабочих мест конструктора. Это - уже новый уровень мышления. Рабочие места оказывались непосредственно связанными с ЭВМ, которая заменила конструктору традиционную линейку или арифмометр, появились простейшие дисплеи, позволившие конструктору реализовать обратную связь с ЭВМ. Идея автоматизированных рабочих мест появилась в конце х годов, одновременно с появлением систем разделения времени. С их внедрением также было связано немало надежд. И хотя эти надежды далеко не все оказались оправданными, затраты на создание автоматизированных рабочих мест, конечно, вполне окупились результатами. Еще одним важным следствием появления рабочих мест было внедрение идей диалога ЭВМ-конструктор. Это была важная характеристика определенного этапа развития идей автоматизированного проектирования. До сих пор с ЭВМ работал математик - это он решал задачи, в которых нуждался конструктор. Теперь же сам конструктор получал возможность сидеть за терминалом электронной машины. Это не могло не сказаться на качестве проектов. Однако и автоматизация рабочих мест конструктора, которая произошла в ряде стран в начале х годов, также не решила основной проблемы. Сроки между возникновением замысла конструкции и ее реализацией по-прежнему оставались значительными. Конструкции, предъявляемые к испытаниям, требовали в процессе испытаний многочисленных и трудных доделок, а подчас и существенного изменения. Во всех тех ситуациях, когда проверочных испытаний не существует, например, при создании промышленных комплексов, дефекты проекта могли оборачиваться подчас трагедией. Да иначе и быть не могло, ибо рабочие места конструктора-это лишь часть общей системы проектирования. Стала очевидной необходимость создания взаимоувязанной системы проектирования, включающей и систему программ для инженерных расчетов, и автоматизированные рабочие места, и разнообразные диалоговые процедуры, и, конечно, автоматизацию всех графических работ. Пока еще рано подводить итоги, говорить о результатах эксплуатации таких систем и об их эффективности. С их вводом связывают большие надежды, поэтому автоматизированное проектирование переживает определенный бум. Прежде всего, для них необходима весьма совершенная вычислительная техника совместно с развитой системой ее коллективного использования. Их эксплуатация потребует большого количества уникальных магнитных дисков, специальных наборов терминальных устройств и т. Поэтому ожидать быстрого появления полноценных систем автоматизированного проектирования не следует. Реально их появление можно ожидать в середине следующего десятилетия. Из этой оценки должен следовать один важный практический вывод: Этот принцип очень важен, он позволит сэкономить не один миллион рублей. Но его реализация потребует не только специальной организации программного обеспечения но и специальной организации работы пользователей-групп конструкторов и проектировщиков. Теперь относительно проблем диалога. Сегодня все согласны с тем, что система автоматизированного проектирования - некоторая специальная диалоговая система, что диалог человек-ЭВМ должен занимать центральное место в процессе проектирования. Но, к сожалению, многие считают, что организация диалога не содержит научной проблематики и сводится прежде всего к решению чисто технических вопросов создания специальных терминальных устройств и хорошего математического обеспечения - пакетов программ для решения инженерных задач. Это - глубокая ошибка. И если она будет устранена своевременно, то создание систем автоматизированного проектирования может привести к разочарованию и неуспеху. Необходимо создать специальную систему правил и алгоритмов, которые составят основу новой технологии автоматизированного проектирования сложных объектов. Без создания новой технологии системы автоматизированного проектирования, подобно автоматизированным рабочим местам, будут полезным инструментом, который усовершенствует процесс проектирования, но вряд ли внесет в него те изменения, которые его качественно улучшат. Необходимо сделать несколько замечаний о 'теории' неформальных процедур и ее применимости к проектированию сложных технических конструкций. Их создание, подобных производственному комплексу, самолету, электронной машине, - это прежде всего творческий акт, и он не может быть никогда до конца формализован. Этот факт мы будем считать аксиомой и из нее будем исходить. Следует заметить, что целый ряд специалистов полагают, что акт творчества в проектировании в значительной степени может быть заменен специально организованной системой обработки статистического материала. Статистическая обработка параметров существующих конструкций очень важна, и ее ни в коем случае не следует недооценивать. Но ее недостаточно, использование только одного статистического материала позволяет создать конструкцию, лишь имеющую аналоги в отдельных технических решениях, то есть подобную уже существующим. Действительно оригинальные конструкции, требующие качественно новых технических решений, конструкции завтрашнего дня всегда требуют нетрафаретного мышления, смелости и таланта. Получать их на основе статистики невозможно. Но приняв в качестве постулата невозможность полной формализации, надо сделать и следующий шаг - понять место и значение формальных методов, то есть методов, использующих математическое описание решаемых задач, понять, чем и как они могут быть полезны конструктору, как они должны быть объединены с неформальными процедурами. При проектировании сложных конструкций важнейшим является принцип разделения. Этот принцип - принцип декомпозиции - лежит, по существу, в основе всех технологий проектирования. И это легко понять, так как конструктор, как бы талантлив он ни был, может оперировать только с относительно небольшим объемом информации. Это разделение — декомпозиция - должно быть приспособлено и к сборке - синтезу. Это можно пояснить на примере самолета. На вершине рассматриваемой иерархии находится главный конструктор машины, и перед ним стоит проблема такого выбора параметров, который бы обеспечил решение задач, поставленных заказчиком. Если речь идет о пассажирском самолете, то заказчик-Министерство гражданской авиации ГВФ. Он хочет, например, иметь самолет для грунтовых аэродромов, который был бы лучше тех, которые он сегодня эксплуатирует, - ЯК, АН и т. Если речь идет об истребителе, то заказчик хочет иметь самолет, который был бы лучше существующих истребителей. Задача так и должна ставиться - это естественная постановка на естественном языке. Сформировать же некий функционал F x , зависящих от всех параметров самолета х, максимизация которого гарантировала бы решение задачи, никакой математик или конструктор не в состоянии. Более того, в реальности функционал зависит не только от конструктивных параметров самолета, но и от большого количества неопределенных факторов уОY, характеризующих среду, в которой самолет будет функционировать. Тем не менее, для решения этой задачи мы можем использовать идеи имитации. Рассмотрим оба типа самолетов, о которых шла речь; сначала обсудим ситуацию с истребителем. Предположим, что мы создали систему, имитирующую бой двух истребителей. Закладывая в ЭВМ параметры проектируемого и какого-либо из существующих самолетов-истребителей, мы Разыгрываем серию боев нашего будущего самолета с машиной, с которой мы собираемся его сравнить. В результате набираем необходимую статистику. Она нам и покажет, какой из самолетов 'лучше'. Речь идет о завоевании господства в воздухе. И если оказалось, что большее количество боев выиграл проектируемый самолет, то это и будет означать, что он лучше существующего. С самолетом для гражданского воздушного флота дело будет обстоять несколько сложнее: Но проведя серию имитационных экспериментов, мы дадим возможность эксперту, если ситуация отвечает гипотезе компетентности, выбрать более предпочтительный вариант. Значит, имитационная система в принципе позволяет сравнивать варианты и отбирать наилучший. А это и означает возможность поиска максимума функционала без знания его явного выражения. Однако это лишь 'принципиальная' возможность использования имитационной системы как инструмента оптимизации. Имитационная система-это, в принципе, машинный аналог испытательного полигона. Имитационный эксперимент на порядок дешевле летного или любого натурального эксперимента. Но всего лишь на порядок: Создание имитационной системы - еще не решение проблемы. Значит, для действительно эффективного использования имитационной системы и всей системы автоматизированного проектирования необходимо учитывать тот факт, что и главный конструктор обладает определенными и вполне ограниченными психофизиологическими возможностями обработки информации. Следовательно, необходима декомпозиция проблемы. Обсуждение процедур автоматизированного проектирования начнем с высшего уровня-уровня главного конструктора. В реальных условиях n никогда не превосходит десятка, N-это многие тысячи. Как следует из опыта организации и использования неформальных процедур, агрегированные характеристики, которыми мыслит эксперт, всегда достаточно индивидуализированы. Но это не значит, что системы автоматизированного проектирования должны быть строго индивидуальны. Отдельные блоки системы, общая схема операционной системы САПР системы автоматизированного проектирования , структура банков данных, основная часть математического обеспечения должны быть стандартизированы. Но не может не приниматься во внимание тот факт, что главный конструктор машины по-своему думает о ней, имеет собственные оценки и критерии, отличные от тех, которые имел бы другой главный конструктор. Не следует, конечно, и переоценивать роль этого индивидуального элемента. Существует целый ряд характеристик конструкции самолета, в частности , которые являются общепринятыми. Например, для самолета максимальная скорость, маневренность, потолок и т. Но, кроме того, в зависимости от характера проектируемого самолета и особенностей мышления конструктора могут возникнуть и специфические параметры. Например, если речь идет о пассажирском лайнере или транспортном самолете, то может возникнуть потребность в расчете прочностных или экономических характеристик. Перестройка математического обеспечения в этом случае не будет носить принципиального характера, поскольку эти характеристики практически всегда вычисляются в одном из блоков имитационной системы. Очень важно еще, чтобы расчет агрегированных характеристик был достаточно простым, с тем чтобы он мог быть проведен с помощью математического обеспечения, которое содержится в отдельных блоках системы. Примером таких расчетов является расчет тактико-технических характеристик. Итак, первый этап декомпозиции состоит в назначении некоторого набора функционалов, которые, с точки зрения главного конструктора, достаточно полно характеризуют конструкцию, с тем чтобы среди возможных вариантов отобрать те, которые будут подвергнуты дальнейшему анализу. Следующий этап-это выделение существенных переменных. Последующий этап-организация и использование процедур оптимизации, составляющих основу для построения паретовского множества. Дальнейшие процедуры паретовского анализа - выбор параметров х, реализующих компромисс: Задаем функционалы акт существенно неформальный. Формируем функционал это-последовательность строгих процедур. Решаем задачу и находим 'оптимальное значение'. По заданному определяем параметры конструкции и переходим к следующему этапу проектирования. До сих пор мы ориентировались на изучение того случая, когда нет формализованного критерия, когда оценка качества проекта - это субъективно представление эксперта. Была рассмотрена также ситуация, в которой можно составить систему формальных процедур, позволяющих вычислить функционал. Но вычисление этого критерия было столь трудоемким, что его нельзя было использовать непосредственно для определения оптимальной системы параметров конструкции. Весьма распространенным свойством объекта проектирования является существование некоторого доминирующего функционала, и весь анализ конструкции должен быть привязан к изучению вариантов в окрестности его оптимума. Предположим, что проект характеризуется показателями а конструктор стремится выбирать параметры конструкции - вектор х - так, чтобы обеспечить выполнение условий. Определив минимальную величину и систему параметров - вектор , который реализует этот 'оптимальный' проект,--мы вычислим в точке остальные характеристики: Они должны быть предъявлены эксперту, который будет заведомо неудовлетворен значениями найденных показателей. Значит самый дешевый проект должен быть забракован. Он не будет удовлетворять заказчика по другим показателям. Но от предельной стоимости мы далеко отступить не сможем, нас лимитируют выделенные деньги. Поэтому в окрестности точки надо тем или иным образом построить сетку точек, которым соответствуют близкие значения функционала. При реализации процедуры, описанной в предыдущем пункте, мы неизбежно встретим одну трудность, типичную для любого проекта,--размерность задачи. Для этой цели ввели 'существенные' функционалы и 'существенные' переменные, которые позволили от задач, размерность которых была порядка многих тысяч, перейти к задачам размерности десятка. Предположим, что речь идет о проекте обустройства системы нефтяных месторождений А, Б, В, Г, Д. Прежде всего у него есть определенная цель - обеспечить выполнение плана поступления нефти в центральный нефтепровод Этот план задан данному региону исходя из общих потребностей страны в нефти в виде некоторой функции где -момент начала добычи нефти, Т-конец планового периода. Задача проектировщика состоит в том, чтобы определить плановые задания производства отдельным месторождениям , создать проект сети нефтепроводов, соединяющих месторождения с центральным нефтепроводом, определить очередность строительства, наметить пункты сбора и первичной обработки нефти, спроектировать систему закачки воды для поддержания пластового давления, спроектировать систему электропитания и т. Все это множество величин должно быть выбрано так, чтобы не только обеспечить выполнение условия , но и достичь минимума стоимости, то есть минимума функционала , и, кроме того, минимизировать значения многих других показателей, которые характеризуют качество проекта. Разумеется, составление проекта, выбор параметров потребуют определенной иерархии, проектирования 'по этажам'. Верхним этажом, очевидно, должна быть генеральная схема, в которой каждое из месторождений выступает как отдельный объект. Но такое выделение верхнего уровня имеет смысл лишь тогда, когда каждое из месторождений описывается относительно небольшим количеством параметров. Но как это сделать, если количество скважин на более или менее крупном месторождении исчисляется тысячами? Очевидно, что без специальной формы агрегирования, объединения величин здесь не обойтись. Способ агрегирования подсказывает сама особенность задачи. Тогда изменение числа скважин будет описываться системой дифференциальных уравнений вида. Вместе с оценкой стоимости вы получите бесплатно БОНУС: Даю согласие на обработку персональных данных и получить бонус. Спасибо, вам отправлено письмо. Если в течение 5 минут не придет письмо, возможно, допущена ошибка в адресе. Проблема автоматизации проектирования в теории систем Федеральное Агентство по Образованию РФ Волгоградский Государственный Университет Факультет Управления Региональной Экономики Кафедра Математических Методов и Информатики в Экономике Реферат По дисциплине: Проблема автоматизации проектирования Волгоград Содержание Введение Общие вопросы автоматизации проектирования Заключение Литература Введение Термин 'автоматизация проектирования' понимается весьма широко: Общие вопросы автоматизации проектирования Сложность используемой и, главным образом, создающейся техники, сложность используемых технологий, транспортных и производственных связей непрерывно растет. Некоторые варианты схемы проектирования а Вспомогательные функционалы, паретовский анализ. Представим себе общую схему процедур проектирования на уровне главного конструктора. Случай, когда существует доминирующий функционал. Тогда изменение числа скважин будет описываться системой дифференциальных уравнений вида где -число скважин на месторождении номера i, - вектор ресурса, выделенный на разбуривание месторождения номера i. Введем величину -дебит отдельной скважины на месторождении номера i. Эта величина определяется многими факторами, но главные из них - это количество скважин и количество уже добытой нефти. Таким образом, закон изменения величины может быть параметризован в виде Величина Страницы: Проектирование высоковольтного стабилизатора Министерство образования Украины Сумской государственный университет Кафедра промышленной электроники Обязательное домашнее задание по курсу:. Жизненный цикл автоматизированной системы Построение моделей деятельности предприятия. Разработка системного проекта в соответствии с требованиями заказчика. Разработка предложений по автоматизации предприятия, его технического проекта. Этап разработки, тестирования и внедрения проекта. Информационные технологии Проблемы при внедрении и проектировании автоматизированной информационной системы на предприятии. Построение адекватной модели с последующей адаптацией к требуемой. Роль информации в обеспечении задач управления. Компьютерные технологии в управлении строительными организациями Особенности и специфика управления строительными организациями. Назначение специализированного программного обеспечения строительных организаций. Обзор систем автоматизированного проектирования САПР и географической информационной системы ГИС. Особенности реализации машинно-ориентированных алгоритмов расчета частотных характеристик канала воздействия Рассмотрены проблемы формализованного анализа динамики сложных технологических объектов на базе топологических моделей. Приведены результаты машинной реализации алгоритмов расчета частотных характеристик. Основы САПР системы автоматизированного проектирования Технологии автоматизированного проектирования, автоматизированного производства, автоматизированной разработки и конструирования. Концептуальный проект предполагаемого продукта в форме эскиза или топологического чертежа как результат подпроцесса синтеза. Система автоматизированного проектирования Государственный комитет РФ по высшему образованию ДВГТУ Электромеханический факультет Кафедра: Применение модуля EPLAN PPE при сквозном проектировании АСУ ТП Среди предлагаемых в настоящее время программных продуктов, предназначенных для проектирования автоматизированных систем управления технологическими процессами, особого внимания заслуживает модуль EPLAN PPE Process Plant Engineering. Совершенствование информационного обеспечения организации Необходимость информационного обеспечения предприятия на современном этапе, порядок оценки качества, его объективные, технические и субъективные показатели. Порядок проектирования информационных систем, роль в данном процессе специалиста-экономиста. Информационные системы Понятие информационной системы как системы сбора, хранения, накопления, поиска и передачи информации, применяемая в процессе управления или принятия решений. Классификация и структура информационных систем. Разнообразие задач, решаемых с помощью ИС. Новые задачи - новые решения. Пример подхода к определению критериев выбора CASE-средств В докладе рассказывается об основных критериях выбора CASE-средств. Стандартизация и проектирование программных средств СППС Вопросы к дисциплине: Стандартизация и проектирование программных средств. Понятие программы и программного обеспечения. Две роли программного обеспечения. Системология новая информационная технология компьютеризации инженерных знаний Направления совершенствования методов и средств автоматизации инженерного труда. Характеристика реальной детали в ЭВМ. Стадии проектирования систем автоматизированного проектирования Состав, содержание и документирование работ на стадиях создания систем автоматизированного проектирования. Стандарты создания технологического оборудования, тактико-техническое задание и технико-экономическое обоснование комплекса средств автоматизации. Характеристика программного продукта 'CATIA' Общие сведения о системах автоматизированного проектирования и детальное изучение программного продукта французской фирмы CATIA. Применение поддержки жизненного цикла изделия, описание продуктов и модулей программы при проектировании поверхностей. Моделирование потоков данных Внешние сущности. Построение иерархии диаграмм потоков данных. Категории Авиация и космонавтика Административное право Арбитражный процесс 29 Архитектура Астрология 4 Астрономия Банковское дело Безопасность жизнедеятельности Биографии Биология Биология и химия Биржевое дело 79 Ботаника и сельское хоз-во Бухгалтерский учет и аудит Валютные отношения 70 Ветеринария 56 Военная кафедра География Геодезия 60 Геология Геополитика 49 Государство и право Гражданское право и процесс Делопроизводство 32 Деньги и кредит Естествознание Журналистика Зоология 40 Издательское дело и полиграфия Инвестиции Иностранный язык Информатика 74 Информатика, программирование Исторические личности История История техники Кибернетика 83 Коммуникации и связь Компьютерные науки 75 Косметология 20 Краеведение и этнография Краткое содержание произведений Криминалистика Криминология 53 Криптология 5 Кулинария Культура и искусство Культурология Литература:

Руководителю предприятия. Внедрение системы автоматизации, основные проблемы и задачи.

Войти на сайт

Лекции - Современные проблемы автоматизации систем управления - файл 1.doc

Печь блины играть

Расписание электричек самара отрадный на сегодня

Аэропорт домодедово на карте метро

Сколько дают по уходу за вторым

Стиль для девушек

Где хорошие курсы маникюра

Пионер кино расписание саратов

Report Page