Квантовые компьютеры

Квантовые компьютеры

@DigitalWorm
@DigitalWorm

Многие из вас слышали о квантовом компьютере, но что он собой представляет, какие задачи с помощью него можно решать и какие у него проблемы, известно далеко не всем и сегодня мы это постараемся узнаем...

Content:

Квантовые компьютеры используют необычные свойства частиц квантовой природы для получения ускорения в решении ряда математических задач, например, при разложении чисел на простые множители или моделировании химических соединений. В этих задачах квантовый компьютер гораздо эффективнее классического, но для создания квантовых компьютеров требуется решить сложную научно-инженерную задачу.

Элементами квантовых компьютеров являются кубиты (квантовые биты — аналоги классических битов информации, являющихся элементарными единицами для вычислений). В отличие от классических битов, которые принимают значения либо 0, либо 1, квантовые системы находятся одновременно в этих состояниях. Такой «параллелизм» является ключевым для получения ускорения при решении задачах. Центральной проблемой является масштабируемость квантовых компьютеров: из-за хрупкости квантовых состояний тяжело создать систему из достаточно большого количества кубит, поскольку из-за воздействия окружения квантовые состояния разрушаются и в процессе вычислений возникают ошибки.

При этом считается, что порог «квантового превосходства» (quantum supremacy) находится на уровне 50 кубит — такая квантовая система потенциально может решать задачи, которые являются непосильными для самых быстрых суперкомпьютеров, всех тех системах, что используются сейчас.

Применение

Квантовые компьютеры разительно отличаются от традиционных. В них пока нельзя и думать загрузить операционную систему Windows или Linux, сложное ПО и посчитать, быстро он работает или нет. Поэтому ученым приходится отдельно исследовать задачи, в которых может быть очевидно преимущество сверхпроводящего процессора над традиционным. Интересно, что как раз группа Мартиниса в сентябре опубликовала работу, в которой описала такую задачу, но пока неизвестно, удалось ли на практике проверить новый 72-кубитный процессор.

Пока ученные трудятся над созданием квантового компьютера, они одновременно ищут ему применение. Главным остается тот факт, что такой компьютер сможет моментально совершать вычисления и работать с большим объемом данных.

С помощью квантовых компьютеров можно оптимизировать множество процессов: от медицины и до машиностроения. Например, у людей появится возможность диагностировать рак на более ранних стадиях, или делать более сложные автопилоты. Как упоминалось ранее, с помощью квантового компьютера будет возможно быстро раскладывать большие числа на множители и моделировать молекулы ДНК. Также существует теория того, что квантовый компьютер будет справляться с задачами, которые обычный компьютер решить не в состоянии или потратит на это тысячи лет вычислений. Это, допустим, создание искусственного интеллекта или поиск разумных существ во Вселенной, кроме человека. В любом случае все ученные сходятся на том, что это создание такого компьютера будет настоящим прорывом, возможно, главным в истории человечества.

Проблемы

Основная проблема устройства, также присущая проектам всех лидеров индустрии, — оно не может осуществлять квантовые вычисления на постоянной основе (а не только в коротком промежутке времени), а также не умеет хранить результаты этих вычислений. Нивелировать недостатки помогают классические системы, подключенные к квантовой установке и создающие своего рода гибридную систему. Сейчас обычный компьютер — неотъемлемая часть квантового: по бинарной логике, например, управляются лазеры и отслеживаются другие параметры квантовой системы. Информация, полученная в результате вычислений на квантовом устройстве, также интерпретируется при помощи ПК.

Чем больше кубитов находятся в связанном состоянии, тем менее стабильной является система. Для достижения «квантового превосходства» требуется компьютер со многими десятками связанных кубитов, работающими стабильно и с малым числом ошибок. Вопрос о том, до какой степени возможно масштабирование такого устройства (так называемая «Проблема масштабирования»), является предметом новой интенсивно развивающейся области — многочастичной квантовой механики. Центральным здесь является вопрос о природе декогерентности (точнее, о коллапсе волновой функции), который пока остаётся открытым.

Магическая запутанность необходима для управления кубитами. Очевидно, что человек сможет взаимодействовать с отдельными кубитами в регистре через попарно запутанные с ними, пространственно разделенные между собой объекты или разводя кубиты на макроскопические расстояния при сохранении запутанности между ними. Иначе считывать/записывать данные в квантовые регистры вряд ли возможно. Безотносительно к вопросу о физической реальности запутанности в смысле ЭПР, теория квантовых компьютеров имеет собственные трудности. Рассмотрим специфическую проблему квантовых вычислений, которая известна многим специалистам, но в целом не привлекает к себе должного внимания. Она связана с симметрией/антисимметрией совместных состояний тождественных частиц. 

Когда же они появятся

Дать ответ на этот вопрос сейчас очень сложно — практически невозможно. Новости о прорывах в этой сфере появляются регулярно, но нельзя сказать, что они глобальные. В создании квантовых компьютеров заинтересованы все: начиная военными и заканчивая технологическими компаниями. 

«Чтобы область квантовых вычислений активно развивалась, нужно дать людям возможность использовать и изучать квантовые компьютеры, — утверждает Гамбетта. — Сейчас всему научному и промышленному миру следует сосредоточиться на одной задаче — подготовке к эпохе квантовых компьютеров».

Report Page