Компьютерные сети

Компьютерные сети

Н. Олифер

Выбранные модулем моста кадры поступают в псевдоканал не непосредственно, а через два промежуточных модуля — NSP и VS. Модуль NSP (Native Service Processing) обеспечивает предварительную обработку кадров Ethernet. Чаще всего такая обработка связана с изменением или добавлением тега VLAN, что может потребоваться, например, если объединяемые пользовательские сети применяют различные значения VLAN для одной и той же виртуальной сети. Модуль VS (Virtual Switch — виртуальный коммутатор) коммутирует один из каналов присоединения с одним из псевдоканалов. Для услуги VPWS этот модуль работает «вхолостую», выполняя постоянную коммутацию единственного канала присоединения с единственным псевдоканалом. Однако для услуги VPLS, которая рассматривается в следующем разделе, виртуальный коммутатор играет важную роль, поэтому в обобщенной схеме эмуляции услуг Ethernet, представленной на рис. 21.5, он присутствует.

После обработки пришедшего кадра модулями NCP и VS он передается псевдоканалу. Конечные точки Т псевдоканала PW57 выполняют две операции:
□ инкапсуляцию и декапсуляцию пользовательских кадров в кадры MPLS;
□ мультиплексирование и демультиплексирование псевдоканалов в туннеле MPLS.

Процедуру инкапсуляции и формат результирующего кадра определяет спецификация RFC 4448. У исходного кадра отбрасываются поля преамбулы и контрольной суммы, после чего он помещается в кадр MPLS с двумя полями меток: внешней (метка туннеля) и внутренней (метка псевдоканала), как это показано на рис. 21.6). На рисунке не показаны поля заголовка кадра MPLS, относящиеся к конкретной канальной технологии, которая используется на внутренних интерфейсах пограничных маршрутизаторов — как вы помните, кадры MPLS могут иметь обрамление Ethernet, РРР, АТМ или Frame Relay (в случае Ethernet это обрамление не имеет отношения к пользовательскому кадру Ethernet, инкапсулированному в кадр MPLS).

0 12 301234567890123456789012345678901
Заголовок туннеля Заголовок псевдоканала Управляющее слово
Метка туннеля
Ехр
0
TTL
Метка псевдоканала
Ехр
1
TTL == 2
0 0 0 0
Зарезервированно
Порядковый номер
' Кадр Ethernet :
Рис. 21.6. Формат инкапсуляции Ethernet поверх MPLS (RFC 4448)

В то время как первые два слова в заголовке, представленном на рисунке, являются стандартными заголовками MPLS, третье слово, называемое управляющим (control word), впервые появилось в стандарте RFC 4448. Это слово, которое является опциональным, предназначено для упорядочивания кадров, передаваемых по псевдоканалу — для этого каждому кадру маршрутизатором-отправителем присваивается порядковый номер, который помещается в управляющее слово. Потребность в контрольном слове возникает тогда, когда внутри сети провайдера происходит распараллеливание трафика туннеля, и кадры могут выходить из туннеля не в том порядке, в котором были посланы.

Конфигурирование псевдоканалов, то есть согласование внутренних меток, используемых для идентификации и мультиплексирования псевдоканалов внутри туннеля, может быть автоматизировано. Для этого сегодня применяют протокол LDP или BGP. Обратите внимание, что речь идет о прокладке псевдоканала, а не самого туннеля, эти два процесса независимы, так что туннель может быть проложен, например, с помощью протокола RSVP ТЕ, а псевдоканалы в нем — с помощью протокола LDP.

Протокол LDP служит также для уведомления одним маршрутизатором РЕ другого об изменении состояния «работоспособен-неработоспособен» псевдоканала или канала присоединения. Это очень полезное свойство, так как без него удаленный маршрутизатор РЕ не узнает об отказе непосредственно не присоединенных к нему отрезков эмулируемого транспортного соединения и будет пытаться его использовать, посылая данные. Протокол LDP позволяет в случае такого отказа отозвать метку, ранее назначенную псевдоканалу.

В завершение описания услуг VPWS хочется напомнить, что такое важное свойство услуги, как гарантированная пропускная способность, обеспечивается с помощью техники инжиниринга трафика, опирающейся в данном случае на соответствующие свойства туннелей MPLS. Аналогично обстоит дело с параметрами качества обслуживания (QoS) для виртуальных соединений VPWS — они могут быть обеспечены с помощью стандартных механизмов QoS, таких как, например, приоритетное обслуживание, профилирование трафика, контроль доступа и резервирование ресурсов. И в этом случае MPLS является хорошим базисом, так как детерминированность туннелей MPLS делает контроль доступа намного более определенной процедурой, чем в случае IP-сетей с их распределенным (и вносящим неопределенность) механизмом выбора маршрутов.

Услуги VPLS
Услуги виртуальной частной локальной сети (Virtual Private LAN Service, VPLS) описаны в спецификациях RFC 4761 (
http://www.rfc-editor.org/rfc/rfc4761.txt
) и RFC 4762 (
http://www
. rfc-editor.org/rfc/rfc4762.txt).
Услуги VPLS соответствуют определению услуг E-LAN MEF, причем как варианту с учетом идентификаторов VLAN пользователей, так и варианту без их учета.

Так же как и в случае VPWS, сервис VPLS организован на базе псевдоканалов. Отличие заключается в том, что для каждого экземпляра VPLS используется собственный набор псевдоканалов. При этом каждый такой набор имеет полносвязную топологию, то есть все пограничные маршрутизаторы РЕ, участвующие в работе какого-то экземпляра VPLS, связаны друг с другом.

На рис. 21.7 показан пример сети провайдера, эмулирующей два сервиса VPLS. Пользовательские сети Cl, С5 и С8 относятся к «серому» сервису VPLS, а сети С2, СЗ, С4, С6 и С7 — к «белому». Соответственно, набор псевдоканалов PW-B1, PW-B2 и PW-B3 объединяет пограничные маршрутизаторы, к которым подключены сети «серого» сервиса VPLS, а набор псевдоканалов PW-W1, PW-W2 и PW-W3 — маршрутизаторы, к которым подключены сети «белого» сервиса VPLS (в нашем примере это одни и те же пограничные маршрутизаторы PEI, РЕ2 и РЕЗ, но если бы, например, сети С4 не существовало, то псевдоканалы PW-W2 и PW-W3 были бы не нужны).

Внутренняя организация пограничного маршрутизатора при оказании услуги VPLS показана на примере маршрутизатора РЕ1. Мы видим, что для поддержки каждого экземпляра сервиса VPLS пограничному маршрутизатору требуется отдельный виртуальный коммутатор, в данном случае это модули VPB и VPW (модули NSP не показаны, чтобы не загромождать рисунок, но они в РЕ1 входят, по одному на каждый экземпляр VPLS).

Как и в случае VPWS, модуль В выполняет стандартные функции моста и при этом формирует логический интерфейс с каждым из виртуальных коммутаторов. Этот интерфейс может также формироваться на основе коммутации либо пользовательских портов,'когда весь трафик от определенного порта (или нескольких портов) передается на логический интерфейс, либо сетей VLAN, когда выбираются кадры одной или нескольких пользовательских сетей VLAN от одного или нескольких портов.

Однако если в случае VPWS виртуальный коммутатор выполнял простую работу по передаче кадров от логического интерфейса, то для VPLS этот модуль функционирует по алгоритму стандартного коммутатора (моста). Для этого виртуальный коммутатор изучает МAC-адреса и строит свою таблицу продвижения, как и обычный коммутатор. На рисунке показан упрощенный вид таблицы продвижения РЕ1, состоящей из двух записей: одна запись связывает адрес М8 сети С8 с псевдоканалом PW-B1, другая — адрес М5 сети С5 с псевдоканалом PW-B2. Пользуясь такой таблицей, виртуальный коммутатор не затапливает сеть, получая кадры с адресами М5 или М8, а направляет их в псевдоканал, ведущий к пограничному коммутатору, к которому подключена сеть с узлом назначения. Кадры с широковещательным адресом или адресом, отсутствующим в таблице продвижения, поступают на все его псевдоканалы, в данном случае — на PW-B1 и PW-W1.

Единственной особенностью виртуального коммутатора является то, что он не изучает адреса отправления кадров, приходящих с логического интерфейса. Это не требуется, потому что для интерфейсов, представленных псевдоканалами, виртуальный коммутатор работает по правилу расщепления горизонта (split horizon) — он никогда не передает на псевдоканалы кадры, полученные от какого бы то ни было псевдоканала. Тем самым предотвращается образование петель между виртуальными коммутаторами, а доставку кадров по назначению гарантирует полносвязная топология. То есть любой кадр, полученный виртуальным коммутатором по псевдоканалу, всегда передается на логический интерфейс, соответствующий тому сервису VPLS, к которому относится псевдоканал.

Модуль моста В изучает только адреса, приходящие с пользовательских интерфейсов. Они служат ему для выбора нужного интерфейса в том случае, когда несколько пользовательских сетей относятся к одному сервису VPLS.

Конфигурирование РЕ может оказаться трудоемким занятием, так как в случае N пограничных коммутаторов нужно создать N(N- 1)/2 псевдоканалов. Кроме того, добавление любого нового устройства РЕ требует переконфигурирования всех остальных коммутаторов. Для автоматизации этих процедур можно использовать вариант организации VPLS, описанный в RFC 4761, так как он предусматривает применение для этой цели протокола BGP. Вариант VPLS, описанный в RFC 4762, подразумевает распределение меток второго уровня иерархии с помощью протокола LDP, автоматизацию процедур конфигурирования он не поддерживает.

Ethernet поверх Ethernet
Области улучшений Ethernet
Рассмотрим более подробно те новые свойства, которые необходимо добавить к классическому варианту Ethernet, чтобы превратить его в транспортную технологию операторского класса (Carrier Ethernet Transport, СЕТ), способную работать в сети провайдера в качестве основного транспортного механизма.
Разделение адресных пространств пользователей и провайдера

Адресное пространство сети современной коммутируемой сети Ethernet состоит из двух частей: значений МAC-адресов конечных узлов и значений меток локальных виртуальных сетей (VLAN), на которые логически разделена сеть. Коммутаторы Ethernet при принятии решения при продвижении кадра учитывают оба адресных параметра.

Если сеть провайдера будет составлять с сетями пользователей единое целое на уровне Ethernet, то такая сеть окажется практически неработоспособной, так как все коммутаторы провайдера должны будут в своих таблицах продвижения содержать МАС-адреса всех конечных узлов всех пользователей, а также поддерживать принятое каждым пользователем разбиение сети на локальные виртуальные сети. Помимо очевидной проблемы с количества МAC-адресов (для крупного провайдера это значение может доходить до нескольких миллионов) есть еще проблема с их уникальностью — хотя система назначения адресов и призвана предотвратить дублирование «аппаратных» МАС-адресов, существуют еще и программируемые адреса, да и ошибки в прошивании аппаратных адресов тоже случаются.

Использование пользовательских меток VLAN в сети провайдера также приводит к проблемам. Во-первых, пользователям нужно договариваться о согласованном применении значений VLAN, чтобы они были уникальными для каждого пользователя, так как только тогда сеть провайдера сможет доставлять кадры нужным пользовательским сетям. Представить, как реализовать такую процедуру практически, очень непросто, ведь каждый новый пользователь приходит со своими значениями VLAN, и если заставлять его их переназначать, то можно потерять пользователя. Во-вторых, стандарт VLAN изначально не был рассчитан на глобальное применение и поэтому в нем предусмотрено только 4092 значения метки, что крайне мало для крупного провайдера.

Если посмотреть, как решаются эти проблемы в сетях провайдеров, построенных на других принципах, то мы увидим, что при использовании провайдером технологии IP МАС-адреса пользователей вообще не проникают в маршрутизаторы провайдера
72

, а IP-адреса пользователей представлены в таблицах маршрутизаторов в агрегированном виде — прием, для плоских МАС-адресов недоступный. В сетях, реализующих рассмотренную ранее технологию EoMPLS, МАС-адреса и метки VLAN пользователей применяются только в пограничных маршрутизаторах провайдера, а в магистральных маршрутизаторах они не работают — там их заменяют два уровня меток MPLS.
Маршрутизация, инжиниринг трафика и отказоустойчивость

Операторы связи привыкли к ситуации полного контроля над путями следования трафика в своих сетях, что обеспечивает, например, технология SDH. В IP-сетях степень контроля оператора над маршрутами трафика очень низкая, и одной из причин популярности технологии MPLS служит то, что она привнесла в IP-сети детерминированность маршрутов. Другой желательной для операторов характеристикой сети является отказоустойчивость маршрутов, то есть возможность быстрого перехода на новый маршрут при отказах узлов или линий связи сети. Технология SDH всегда была в этом плане эталоном, так как обеспечивает переход с основного на заранее проложенный резервный путь за десятки миллисекунд. MPLS также обладает подобным свойством.

В сетях Ethernet маршрутизация трафика и отказоустойчивость обеспечиваются протоколом покрывающего дерева (STP). Этот протокол дает администратору сети очень ограниченный контроль над выбором маршрута (это справедливо и для новых вариантов STP, таких как RSTP и MSTP). Кроме того, покрывающее дерево является общим для всех потоков независимо от их адреса назначения. Ввиду этих особенностей протокол STP/RTP является очень плохим решением в отношении инжиниринга трафика. Отказоустойчивость маршрутов также обеспечивается STP, и хотя новая версия RTP значительно сократила время переключения на новый маршрут (с нескольких десятков секунд до одной-двух), до миллисекундного диапазона SDH ей очень далеко. Все это требует нового подхода к маршрутизации потоков в сетях СЕТ, и IEEE работает над этой проблемой.

Функции эксплуатации, администрирования и обслуживания

Функции эксплуатации, администрирования и обслуживания (Operation, Administration, Maintenance, ОАМ) всегда были слабым звеном Ethernet, и это одна из главных причин, по которой операторы связи не хотят применять эту технологию в своих сетях. Новые стандарты, предлагаемые IEEE и ITU-T, призваны исправить эту ситуацию, вводя средства, с помощью которых можно выполнять мониторинг достижимости узлов, локализовывать неисправные сегменты сети и измерять уровень задержек и потерь кадров между узлами сети.

Первая группа функций направлена на решение проблемы использования Ethernet для оказания услуги виртуальных частных сетей, а две остальные — на придание Ethernet функциональности, необходимой для применения Ethernet в качестве внутренней транспортной технологии оператора связи.
Функции эксплуатации, администрирования и обслуживания в Ethernet
К настоящему времени разработано несколько стандартов Ethernet, относящихся к функциям эксплуатации, администрирования и обслуживания:

□ IEEE 802. lag. Connectivity Fault Management (CFM). Стандарт описывает протокол мониторинга состояния соединений, в какой-то степени это аналог протокола BFD, рассмотренного в главе 20.
□ ITU-T Y.1731. Стандарт комитета ITU-T воспроизводит функции стандарта IEEE 802.lag и расширяет их за счет группы функций мониторинга параметров QoS.
□ IEEE 802.3ah. Стандарт тестирования физического соединения Ethernet.
□ MEF E-LMI. Интерфейс локального управления Ethernet.
Протокол CFM

Протокол CFM обеспечивает мониторинг логических соединений различного типа, например это может быть соединение определенной сети VLAN или же соединение EoMPLS услуги VPWS. Протокол CFM может выполнять мониторинг как непосредственно соединенных узлов, так и узлов, соединение между которыми проходит через несколько сетей. Кроме того, CFM может использоваться для соединений полносвязной топологии, характерных для услуг типа E-LAN.

Мониторинг выполняется между так называемыми конечными точками обслуживания (Maintenance End Point, МЕР), представляющих собой конечные точки соединения, состояние которого нужно наблюдать.

Каждая из точек МЕР периодически посылает сообщения проверки непрерывности соединения (Continuity Check Message, ССМ), оформленные как кадры сервиса, соединение которого тестируется. Например, если тестируется соединение по VLAN 5, то сообщения ССМ оформляются как кадры Ethernet с идентификатором VLAN, равным 5.

Устройства, которые не имеют точек МЕР, передают такие сообщения транзитом. В том случае, когда некоторая точка МЕР не принимает сообщений ССМ от другой точки МЕР в течение заданного тайм-аута, соединение считается неработоспособным.
В промежуточных устройствах, через которые проходит соединение, можно сконфигурировать промежуточные точки обслуживания (Maintenance Intermediate Point, MIP). Эти точки помогают отслеживать проблемы, возникающие на промежуточных устройствах.

На рис. 21.8 показан случай мониторинга состояния соединения через сеть VLAN 5. Для этого служат три точки МЕР, одна из которых располагается в сети провайдера, а две
другие — в пограничном оборудовании пользователя. Для того чтобы осуществлять мониторинг соединения полносвязной топологии, которое представляет собой VLAN 5, сообщения ССМ посылаются с групповым адресом Ethernet. Для мониторинга двухточечных соединений могут использоваться как индивидуальные, так и групповые адреса.

VLAN 5 Провайдер
Рис. 21.8. Мониторинг состояния VLAN с помощью протокола CFM

Весьма важной является способность протокола CFM работать в многодоменной среде, когда соединение проходит через несколько сетей, принадлежащих различным административным доменам. Такая ситуация обычно возникает, если соединение является соединением виртуальной частной сети, организуемой одним или несколькими провайдерами (например, когда поставщик услуги VPN пользуется для организации своей сети услугами выделенных каналов оператора связи). Каждый из администраторов доменов нуждается в мониторинге соединения, но только в пределах своей сети.

Для поддержки многодоменного сценария для каждого домена конфигурируется отдельный домен обслуживания, при этом домены обслуживания образуют иерархию доменов, то есть каждый домен работает на своем индивидуальном уровне. В каждом домене создаются точки обслуживания МЕР и MIP, но точки каждого домена работают только с сообщениями ССМ своего уровня, а сообщения более высоких уровней просто прозрачно передают.

Эту идею иллюстрирует рис. 21.9. Здесь показана сеть, состоящая из трех доменов: домена пользователя, домена поставщика услуги виртуальной частной сети и домена оператора связи, через который работает сеть поставщика услуги.
Домен пользователя: уровень 5
Домен провайдера: уровень 4
Е—1] Е-3
Домен оператора: уровень 2
3 d—1 Е—Ш
Рис. 21.9. Многодоменное применение протокола CFM

Домену пользователя присвоен уровень 5, домену провайдера — уровень 4, домену оператора связи — уровень 2 (уровнем по умолчанию в протоколе CFM является уровень 3, он в этом примере отсутствует). Точки обслуживания в сети оператора связи работают с сообщениями ССМ уровня 2, а сообщения точек обслуживания сети пользователя уровня 5 и сети поставщика услуги уровня 4 они передают прозрачно.

В результате оператор связи получает информацию о состоянии соединения в пределах своей сети, провайдер — в пределах своей, а пользователь соединения — «из конца в конец».
Протокол мониторинга качества соединений Y.1731
Стандарт Y.1731, разработанный ITU-T, добавляет к стандарту CFM возможность измерять между точками обслуживания сети некоторые дополнительные параметры.

□ Односторонняя задержка кадра. Для измерения этой задержки точки обслуживания сети МЕР генерируют сообщения измерения задержки и ответа на измерение задержки. В этих сообщениях переносятся временные отметки, позволяющие измерить задержку.
□ Вариация задержки. Эта задержка измеряется на основе тех же сообщений, что и односторонняя задержка.

□ Потери кадров. Для измерения этой величины служат сообщения измерения потерь и ответа на измерение потерь. Счетчики сообщений двух точек обслуживания сравниваются и на основе этого сравнения рассчитываются цотери кадров в каждом из направлений.
Стандарт тестирования физического соединения Ethernet

Стандарт тестирования физического соединения Ethernet предназначен для обнаружения ошибок соединения между двумя непосредственно физически связанными интерфейсами Ethernet. Он поддерживает такие функции, как удаленное обнаружение неисправностей и удаленный контроль обратной связи.


Все материалы, размещенные в боте и канале, получены из открытых источников сети Интернет, либо присланы пользователями  бота. 
Все права на тексты книг принадлежат их авторам и владельцам. Тексты книг предоставлены исключительно для ознакомления. Администрация бота не несет ответственности за материалы, расположенные здесь

Report Page