Компьютерные сети

Компьютерные сети

Н. Олифер

Рассмотрим пример (рис. 18.21). Пусть клиент получил от поставщика услуг пул адресов
IPv6, определяемый префиксом 20:0А:00:С9:74:05/48. Поскольку первые три бита этого
числа равны 001, это — глобальный агрегируемый уникальный адрес.
Префиксы провайдеров 48 бит для конечного абонента 80 бит
3
13
8
24
16
64
FP
TLA
Резерв
NLA
SLA
Идентификаторинтерфейса
001
Wio^tio6cioiei
Пользователь
1
может JI организовать I 65 535 сетей |L________I
20:0А:00:С9:74:05/48
_______

МАС-адрес АТМ-адрес Телефонный номер 1Ру4-адрес
Рис. 18.21. Пример глобального агрегируемого адреса

Адрес этот принадлежит поставщику услуг верхнего уровня, у которого все сети имеют префикс 20:0А/16. Он может выделить поставщику услуг второго уровня некоторый диапазон адресов с общим префиксом, образованным его собственным префиксом, а также частью поля NLA. Длина поля NLA, отводимая под префикс, определяется маской, которую поставщик услуг верхнего уровня также должен сообщить своему клиенту — поставщику услуг второго уровня. Пусть в данном примере маска состоит из 32 единиц в старших разрядах, а результирующий префикс поставщика услуг второго уровня имеет вид 20:0А:00:С9/32.

В распоряжении поставщика услуг второго уровня остается 16 разрядов поля NLA для нумерации сетей своих клиентов. В качестве клиентов могут выступать поставщики услуг третьего и более низких уровней, а также конечные абоненты — предприятия и организации. Пусть, например, следующий байт (01110100) в поле NLA поставщик услуг использовал для передачи поставщику услуг более низкого (третьего) уровня, а тот, в свою очередь, использовал последний байт поля NLA для назначения пула адресов клиенту. Таким образом, с участием поставщиков услуг трех уровней был сформирован префикс 20:0А:00:С9:74:05/48, который получил клиент.

Протокол IPv6 оставляет в полном распоряжении клиента 2 байта (поле SLA) для нумерации сетей и 8 байт (поле идентификатора интерфейса) для нумерации узлов. Имея такой огромный диапазон номеров подсетей, администратор получает широкие возможности. Для сравнительно небольшой сети он может выбрать плоскую организацию, назначая каждой имеющейся подсети произвольные неповторяющиеся значения из диапазона в 65 535 адресов, игнорируя оставшиеся. В крупных сетях более эффективным способом (сокращающим размеры таблиц корпоративных маршрутизаторов) может оказаться иерархическая структуризация сети на основе агрегирования адресов. В этом случае используется та же технология CIDR, но уже не поставщиком услуг, а администратором корпоративной сети.

ПРИМЕЧАНИЕ-
Очевидно, что при таком изобилии сетей, которое предоставляется клиенту в IPv6, совершенно теряет смысл операция использования масок для разделения сетей на подсети, в то время как обратная процедура — объединение подсетей — приобретает особое значение. Разработчики стандартов IPv6 считают, что агрегирование адресов является основным способом эффективного расходования адресного пространства в новой версии протокола IP.

Работа по детализации подтипов адресов протокола IPv6 еще далека от завершения. Сегодня определено назначение только 15 % адресного пространства IPv6, а оставшаяся часть адресов еще ждет своей очереди, чтобы найти применение для решения одной из многочисленных проблем Интернета.
Снижение нагрузки на маршрутизаторы

Одной из основных цеЛей изменения формата заголовка протокола IPv6 было снижение накладных расходов, "го есть уменьшение объема служебной информации, передаваемой с каждым пакетом. Для этого в новом протоколе IP были введены понятия основного и дополнительных заголовков. Основной заголовок присутствует всегда, а необязательные дополнительные заголовки могут содержать, например, информацию о фрагментации исходного пакета, полный маршрут следования пакета при маршрутизации от источника, информацию, необходимую для защиты передаваемых данных.

Основной заголовок имеет фиксированную длину в 40 байт, его формат показан на рис. 18.22.
4 байта
Версия
Приоритет
Метка
Л
Длина Сл. заголовок Лимит переходов
Адрес источника
(16 байт)
40 байт
Адрес приемника (16 байт)
J
Рис. 18.22. Формат основного заголовка

Поле следующего заголовка соответствует по назначению полю протокола в версии IPv4 и содержит данные, определяющие тип заголовка, который следует за данным. Каждый следующий дополнительный заголовок также содержит поле следующего заголовка. Если IP-пакет не содержит дополнительных заголовков, то в этом поле будет значение, закрепленное за протоколом TCP, UDP, RIP, OSPF или другим, определенным в стандарте IPv4.

В предложениях по поводу протокола IPv6 фигурируют пока следующие типы дополнительных заголовков:
□ заголовок маршрутизации — указание полного маршрута при маршрутизации от источника;
□ заголовок фрагментации — информация, относящаяся к фрагментации IP-пакета (поле обрабатывается только в конечных узлах);
□ заголовок аутентификации — информация, необходимая для аутентификации конечных узлов и обеспечения целостности содержимого IP-пакетов;

□ заголовок системы безопасности — информация, необходимая для обеспечения конфиденциальности передаваемых данных путем шифрования и дешифрирования;
□ специальные параметры — параметры необходимые для последовательной обработки пакетов на каждом маршрутизаторе;
□ параметры получателя — дополнительная информация для узла назначения.
Таким образом, IP-пакет может иметь, например, формат, показанный на рис. 18.23.

Поскольку для маршрутизации пакета обязательным является лишь основной заголовок (почти все дополнительные заголовки обрабатываются только в конечных узлах), это снижает нагрузку на маршрутизаторы. В то же время возможность использования большого количества дополнительных параметров расширяет функциональность протокола IP и делает его открытым для внедрения новых механизмов.

Основной заголовок IPv6 Заголовок маршрутизации Заголовок фрагментации Заголовок аутентификации Заголовок системы безопасности
Дополнительные данные для узла назначения
Пакет протокола верхнего уровня
Рис. 18.23. Структура 1Р\/6-пакета
Для того чтобы повысить производительность маршрутизаторов Интернета в части выполнения их основной функции — продвижения пакетов, в версии IPv6 предпринят ряд мер по освобождению маршрутизаторов от некоторых вспомогательных задач.

□ Перенесение функций фрагментации с маршрутизаторов на конечные узлы. Конечные узлы в версии IPv6 обязаны найти минимальное значение MTU вдоль всего пути, соединяющего исходный узел с узлом назначения (эта техника под названием Path MTU Discovery уже используется в IPv4). Маршрутизаторы IPv6 не выполняют фрагментацию, а только посылают ICMP-сообщение о слишком длинном пакете конечному узлу, который должен уменьшить размер пакета.

□ Агрегирование адресов ведет к уменьшению размера адресных таблиц маршрутизаторов, а значит, — к сокращению времени просмотра и обновления таблиц. При этом также сокращается служебный трафик, порождаемый протоколами маршрутизации.

□ Широкое использование маршрутизации от источника. При маршрутизации от источника узел-источник задает полный маршрут прохождения пакета через сети. Такая техника освобождает маршрутизаторы от необходимости просмотра адресных таблиц при выборе следующего маршрутизатора.
□ Отказ от обработки не обязательных параметров заголовка.
□ Использование в качестве номера узла его МАС-адреса избавляет маршрутизаторы от необходимости применять протокол ARP.

Новая версия протокола IP, являющаяся составной частью проекта IPv6, предлагает встроенные средства защиты данных. Размещение средств защиты на сетевом уровне делает их прозрачными для приложений, так как между уровнем IP и приложением всегда будет работать протокол транспортного уровня. Приложения переписывать при этом не придется. Новая версия протокола IP со встроенными средствами обеспечения безопасности называется IPSec (Security Internet Protocol — защищенный протокол IP). Возможности этого протокола подробно рассматриваются в главе 24.

Переход на версию IPv6
При разработке IPv6 была предусмотрена возможность плавного перехода к новой версии, когда довольно значительное время будут сосуществовать островки Интернета, работающие по протоколу IPv6, и остальная часть Интернета, работающая по протоколу IPv4. Существует несколько подходов к организации взаимодействия узлов, использующих разные стеки TCP/IP.

□ Трансляция протоколов. Трансляция протоколов реализуется шлюзами, которые устанавливаются на границах сетей, использующих разные версии протокола IP. Согласование двух версий протокола IP происходит путем преобразования пакетов IPv4 в IPv6, и наоборот. Процесс преобразования включает, в частности, отображение адресов сетей и узлов, различным образом трактуемых в этих протоколах. Для упрощения преобразования адресов между версиями разработчики IPv6 предлагают использовать специальный подтип ПМ)-адреса — 1Ру4-совместимый 1Ру6-адрес, который в младших

4-х байтах переносит ПЧ^-адрес, а в старших 12 байтах содержит нули (рис. 18.24). Это позволяет получать ПЧ4-адрес из ПЧ^б-адреса простым отбрасыванием старших байтов.
1Ру4-адрес (4 байта)
Исходный 1Ру6-адрес (16 байт)(I Ру4-совмести мый 1Ру6-адрес)Рис. 18.24. Преобразование IPv6 в IPv4

Для решения обратной задачи — передачи пакетов IPv4 через части Интернета, работающие по протоколу IPv6, — предназначен 1Ру4-отображенный 1Ру6-адрес. Этот тип адреса также содержит в 4-х младших байтах 1Ру4-адрес, в старших 10-ти байтах — нули, а в 5-м и 6-м байтах 1Ру6-адреса — единицы, которые показывают, что узел поддерживает только версию 4 протокола IP (рис. 18.25).
IPv6 (16 байт)(^4-отображенный IPv6-aflpec)
Исходный IPv4-aflpec (4 байта)Рис. 18.25. Преобразование IPv4 в IPv6

□ Мультиплексирование стеков протоколов. Мультиплексирование стеков протоколов означает установку на взаимодействующих хостах сети обеих версий протокола IP. Обе версии стека протоколов должны быть развернуты также на разделяющих эти хосты маршрутизаторах. В том случае, когда IPv6-xoct отправляет сообщение 1Ру6-хосту, он использует стек IPv6^a если тот же хост взаимодействует с IPv4-xoctom — стек IPv4. Маршрутизатор с установленными на нем двумя стеками называется маршрутизатором IPv4/IPv6, он способен обрабатывать трафики разных версий независимо друг от друга.

□ Инкапсуляция, или туннелирование. Инкапсуляция — это еще один метод решения задачи согласования сетей, использующих разные версии протокола IP. Инкапсуляция может быть применена, когда две сети одной версии протокола, например IPv4, необходимо соединить через транзитную сеть, работающие по другой версии, например IPv6 (рис. 18.26) При этом пакеты IPv4 помещаются в пограничных устройствах (на рисунке роль согласующих устройств исполняют маршрутизаторы) в пакеты IPv6 и переносятся через «туннель», проложенный в IPv6-ceTH. Такой способ имеет недостаток заключающийся в том, что узлы IPv4-ceTeft не имеют возможности взаимодействовав с узлами транзитной IPv6-cera. Аналогичным образом метод туннелирования може^ использоваться для переноса пакетов IPv6 через сеть маршрутизаторов IPv4.

Рис. 18.26. Согласование технологий IPv4 и IPv6 путем туннелирования (инкапсуляции)
Переход от версии IPv4 к версии IPv6 только начинается. Сегодня уже существуют фра менты Интернета, в которых маршрутизаторы поддерживают обе версии протокола. 3i фрагменты объединяются между собой через Интернет, образуя так называемую маг страль бВопе.
Маршрутизаторы
Функции маршрутизаторов

Основная функция маршрутизатора — чтение заголовков пакетов сетевых протоколов, щ пимаемых и буферизуемых по каждому порту (например, IPX, IP, AppleTalk или DECm и принятие решения о дальнейшем маршруте следования пакета по его сетевому адре включающему, как правило, номера сети и узла.
(hvHIflIMM МЯПШПЛГГИЯЯТГтЯ МОГУТ быть ПЯябиТЫ НЯ ТПМ ГПУППЫ П РООТИРТРТПИМ Г УПОВНЯ

Порт 1 Порт 2 Порт 3 Порт 4Ethernet Ethernet Token Ring V.35 (X.25, frame relay, ISDN)Рис. 18.27. Функциональная модель маршрутизатора
Уровень интерфейсов

На нижнем уровне маршрутизатор, как и любое устройство, подключенное к сети, обеспечивает физический интерфейс со средой передачи, включая согласование уровней электрических сигналов, линейное и логическое кодирование, оснащение определенным типом разъема. В разных моделях маршрутизаторов часто предусматриваются различные наборы физических интерфейсов, представляющих собой комбинацию портов для подсоединения локальных и глобальных сетей. С каждым интерфейсом для подключения локальной сети неразрывно связан определенный протокол канального уровня, например семейства Ethernet, Token Ring, FDDI. Интерфейсы для присоединения к глобальным сетям чаще всего определяют только некоторый стандарт физического уровня, поверх которого в маршрутизаторе могут работать различные протоколы канального уровня. Например, глобальный порт может поддерживать интерфейс V.35, поверх которого могут работать различные протоколы канального уровня: РРР (передает трафик протокола IP и других сетевых протоколов), LAP-B (используемый в сетях X.25), LAP-F (используемый в сетях Frame Relay), LAP-D (используемый в сетях ISDN), ATM. Разница между интерфейсами локальных и глобальных сетей объясняется тем, что технологии локальных сетей определяют стандарты как физического, так и канального уровней, которые могут применяться только вместе.

Интерфейсы маршрутизатора выполняют полный набор функций физического и канального уровней по передаче кадра, включая получение доступа к среде (если это необходимо), формирование битовых сигналов, прием кадра, подсчет его контрольной суммы и передачу поля данных кадра верхнему уровню при корректном значении контрольной суммы.
ПРИМЕЧАНИЕ-

Как и любой конечный узел, каждый порт маршрутизатора имеет собственный аппаратный адрес (в локальных сетях это МАС-адрес), по которому другие узлы направляют ему кадры, требующие маршрутизации.

Перечень физических интерфейсов, которые поддерживает та или иная модель маршрутизатора, является его важнейшей потребительской характеристикой. Маршрутизатор должен поддерживать все протоколы канального и физического уровней, используемые в каждой из сетей, к которым он будет непосредственно присоединен. На рис. 18.27 показана функциональная модель маршрутизатора с четырьмя портами, реализующими физические интерфейсы 10Base-T и 10Base-2 для двух портов Ethernet, UTP для Token Ring, а также интерфейс V.35, поверх которого может работать протокол LAP-B, LAP-D или LAP-F, обеспечивая подключение к сетям Х.25, ISDN или Frame Relay.

Кадры, которые поступают на порты маршрутизатора, после обработки соответствующими протоколами физического и канального уровней освобождаются от заголовков канального уровня. Извлеченные из поля данных кадра пакеты передаются модулю сетевого протокола.
Уровень сетевого протокола

Сетевой протокол, в свою очередь, извлекает из пакета заголовок сетевого уровня, анализирует и корректирует его содержимое. Прежде всего проверяется контрольная сумма, и если пакет пришел поврежденным, он отбрасывается. Кроме того, выполняется проверка на превышение времени жизни пакета (время, которое пакет провел в сети). Если превышение имело место, то пакет также отбрасывается. На этом этапе вносятся корректировки в содержимое некоторых полей, например наращивается время жизни пакета, пересчитывается контрольная сумма.

На сетевом уровне выполняется одна из важнейших функций маршрутизатора — фильтрация трафика. Пакет сетевого уровня, находящийся в поле данных кадра, для мостов/ коммутаторов представляется неструктурированной двоичной последовательностью. Маршрутизаторы же, программное обеспечение которых содержит модуль сетевого протокола, способны производить анализ отдельных полей пакета. Они оснащаются развитыми средствами пользовательского интерфейса, которые позволяют администратору без особых усилий задавать сложные правила фильтрации. Маршрутизаторы, как правило, позволяют также анализировать структуру сообщений транспортного уровня, поэтому фильтры могут не пропускать в сеть сообщений определенных прикладных служб, например службы telnet, анализируя поле типа протокола в транспортном сообщении.

Однако основной функцией сетевого уровня маршрутизатора является определение маршрута пакета. По номеру сети, извлеченному из заголовка пакета, модуль сетевого протокола находит в таблице маршрутизации строку, содержащую сетевой адрес следующего маршрутизатора и номер порта, на который нужно передать данный пакет, чтобы он двигался в правильном направлении.

Перед тем как передать сетевой адрес следующего маршрутизатора на канальный уровень, необходимо преобразовать его в локальный адрес той технологии, которая используется в сети, содержащей следующий маршрутизатор. Для этого сетевой протокол обращается к протоколу разрешения адресов.

С сетевого уровня пакет, локальный адрес следующего маршрутизатора и номер порта маршрутизатора передаются вниз, канальному уровню. На основании указанного номера порта осуществляется коммутация с одним из интерфейсов маршрутизатора, средствами которого выполняется упаковка пакета в кадр соответствующего формата. В поле адреса назначения заголовка кадра помещается локальный адрес следующего маршрутизатора. Готовый кадр отправляется в сеть.
Уровень протокола маршрутизации

Сетевые протоколы активно используют в своей работе таблицу маршрутизации, но ни ее построением, ни поддержанием не занимаются. Эти функции выполняют протоколы маршрутизации, с помощью которых маршрутизаторы обмениваются информацией о топологии сети, а затем анализируют полученные сведения, определяя наилучшие по тем или иным критериям маршруты. Результаты анализа и составляют содержимое таблиц маршрутизации.

Помимо перечисленных функций на маршрутизаторы могут быть возложены и другие обязанности, например операции, связанные с фрагментацией.
Классификация маршрутизаторов по областям применения
По областям применения маршрутизаторы делятся на несколько классов (рис. 18.28).

Магистральные маршрутизаторы предназначены для построения магистральной сети оператора связи или крупной корпорации. Магистральные маршругизаторы оперируют агрегированными информационными потоками, переносящими данные большого количества пользовательски* соединений.

Для решения этой задачи магистральные маршрутизаторы оснащаются высокоскоростными интерфейсами, такими как АТМ 155/622 Мбит/с, Gigabit Ethernet и 10G Ethernet, а также интерфейсами SONET/SDH со скоростями от 155 Мбит/с до 10 Гбит/с. Для получения отказоустойчивой топологии магистральной сети магистральные маршрутизаторы должны поддерживать несколько таких интерфейсов.

Очевидно, что для того чтобы не создавать «узких мест» в магистральной сети, магистральный маршрутизатор должен обладать очень высокой производительностью. Например, если маршрутизатор оснащен 8 интерфейсами по 10 Гбит/с (Ethernet или SDH), то его общая производительность должна составлять 80 Гбит/с. Для достижения такой производительности магистральные маршрутизаторы обладают распределенной внутренней архитектурой, подобной архитектуре коммутаторов локальных сетей. Каждый порт или группа портов оснащается собственным процессором, который самостоятельно выполняет продвижение IP-пакетов на основании локальной копии таблицы маршрутизации. Для передачи пакетов между портами служит коммутирующий блок на основе разделяемой памяти, общей шины или коммутатора каналов. Общие задачи, включая построение таблицы маршрутизации, хранение конфигурационных параметров, удаленное управление маршрутизатором и т. п., решает центральный блок управления.

Рис. 18.28. Классы маршрутизаторов

Понятно, что функции продвижения IP-пакетов существенно сложнее, чем продвижения кадров Ethernet и других технологий локальных сетей. Поэтому процессоры портов обычно не нагружают дополнительными функциями, такими как фильтрация трафика или трансляция адресов. Даже обеспечение параметров QoS не всегда реализуется таким процессором в полном объеме — обычно дело ограничивается поддержанием очередей, а до профилирования трафика не доходит. Это связано с тем, что магистральный маршрутизатор работает внутри сети и не взаимодействует с внешним миром, а значит, не выполняет пограничные функции, требующие фильтрации и профилирования. Другими словами, основная задача магистрального маршрутизатора — передача пакетов между своими интерфейсами с как можно большей скоростью.


Все материалы, размещенные в боте и канале, получены из открытых источников сети Интернет, либо присланы пользователями  бота. 
Все права на тексты книг принадлежат их авторам и владельцам. Тексты книг предоставлены исключительно для ознакомления. Администрация бота не несет ответственности за материалы, расположенные здесь

Report Page