Бионический (генеративный) дизайн

Бионический (генеративный) дизайн

Mechanoid

Бионический (топонимический, генеративный) дизайн — способ проектирования различных объектов, при котором для снижения веса и увеличения прочности применяются отличные от традиционных решения.

Модель кронштейна, оптимизированная компьютером.
При сохранении изначальной жесткости вес кронштейна уменьшен на 37%

Внешне объекты, произведенные подобным образом, отличаются от обычных техногенных изделий. Они имеют выраженные черты, присущие, например, растениям, имитируют строение конечностей или костей. Именно поэтому такой способ проектирования часто называют бионическим дизайном.

процесс преобразования формы кронштейна с сохранением всех геометрических точек крепления и заданных характеристик прочности.

Другой термин, «генеративный дизайн», используется в связи с тем, что геометрия подобных конструкций автоматически рассчитывается («генерируется») в специальном программном обеспечении.

Зачем нужен бионический дизайн?

Главная задача бионического дизайна — снижение веса объекта при сохранении (или увеличении) исходной прочности. Именно поэтому такие решения чаще используют в сферах, где важно сэкономить каждый грамм: космические аппараты, авиастроение, инновационное машиностроение. Другая смежная задача — экономия дорогих материалов (сложные сплавы, редкие металлы). Бионический подход в проектировании позволяет некоторым компаниям тратить на 30-50% меньше материала, что положительно влияет на стоимость производства и получаемую прибыль.

Дизайн крепления, спроектированного инженерами. Вес 330 гр


Бионический дизайн этого же крепления после оптимизации компьютерными алгоритмами
Вес 165 гр, экономия 41%

Бионический дизайн и 3D-печать

Создание конструкций на основе генеративного проектирования в большинстве случаев возможно только с помощью аддитивных технологий (3D-печать). Дело в том, что традиционные методы производства не в состоянии реализовать проекты со сложной структурой нестандартных элементов, которую предлагает бионический дизайн. С помощью 3D-печати можно изготовить элементы с любыми толщинами, искривлениями, полостям, сетчатой и ячеистой структурами. К тому же послойное построение придает бионическим объектам еще большую прочность и устойчивость к нагрузкам.

Процесс оптимизации формы с сохранением требуемых характеристик

Наиболее популярными технологиями 3D-печати, применяемыми для изготовления объектов с бионическим дизайном, являютсяселективное лазерное плавление металлических порошков (SLM) и селективное лазерное спекание полиамидных порошков (SLS).

Примеры использования бионического дизайна

Airbus и Autodesk

Авиационный гигант Airbus и производитель программного обеспечения для проектирования Autodesk совместно реализуют уникальный проект по снижению веса отдельных элементов гражданских самолетов. В частности партнеры модернизировали дизайн один из элементов салона лайнера Airbus A320 — перегородку между пассажирским салоном и отсеком бортпроводников.

Это обычная на первый взгляд стенка внутри самолета, к которой крепятся откидные сидения, которыми пользуются члены экипажа во время полета. Однако этот элемент конструкции должен быть очень прочным, что делает его вес при производстве традиционными методами высоким.

Airbus и Autodesk совместно разработали новую структуру для перегородки. В ее основе — своеобразная сеть из металлических частей, геометрия которых рассчитана в специальном софте Autodesk с учетом прочностных требований к конструкции. Конструкция была изготовлена по частям с помощью технологии селективного лазерного плавления порошков. Материал — сплав Scalmalloy.

Scalmalloy — сплав алюминия, магния и скандия, коррозийно стойкий материал, по прочности не уступающий титану. Разработан специально для аддитивного производства, сочетает в себе высокую прочность и пластичность, что делает его идеальным для использования в авиастроении, космических разработках, ВПК, машиностроении.

модель перегородки
Готовая деталь

Бионический дизайн этого элемента позволил сделать его на 45% легче, при сохранении той же прочности. Теперь Airbus планирует распространять полученный опыт внедрения генеративного проектирования на другие конструктивные элементы самолетов, снижая их общий вес.

Toyota

Автоконцерн Toyota и ведущий производитель программного обеспечения для 3D-печати компания Materialise совместно разработали прототип суперлегкого автомобильного кресла с необычной структурой. При его проектировании были применены принципы бионического дизайна и топонимической оптимизации. Это позволило распределить материал особым образом: там, где нагрузка высока, расположены участки максимальной плотности (речь идет о макроскопической плотности эффективного материала в представительном элементе объема решетчатой структуры) и наоборот.

Данные о плотности были визуализированы с помощью различных цветов в ПО Materialise. Затем участки с низкой нагрузкой заполнили решетчатыми структурами, которые позволили снизить вес и сохранить общую прочность конструкции кресла. Кроме того, такая фактура обеспечивает дополнительный комфорт для водителя, улучшая теплообмен. Прототип кресла был изготовлен с помощью технологии селективного спекания порошка (SLS). Вес готового изделия уменьшился на 72% (7 кг вместо 25) по сравнению с серийным традиционным образцом. Теплоемкость снизилась с 35,4 до 14,5 Дж/к.

Программное обеспечение для бионического проектирования

Autodesk Within — программный комплекс, призванный помочь в проектировании объектов с оптимизированным для облегчения веса дизайном, создания решетчатых структур, расчета прочности. Специально для 3D-печати.

Autodesk Within
интерфейс программы

Altair OptiStruct — компьютерная технология топологической оптимизации проектов и разработки сложных ячеистых/решетчатых структур для 3D-печати. Входит в программный комплекс Altair HyperWorks. OptiStruct позволяет проводить анализ напряженно-деформированного состояния решетчатых структур, анализ на растяжение-сжатие, сдвиг, изгиб, кручение, оценивать усталостные характеристики. С помощью этой программы инженер может определить наилучшее распределение материала и самые эффективные зоны для построения решетчатых/ячеистых структур. Система сама определяет, где в конструкции нужен плотный материал, где ячеистый, а где можно обойтись без укрепления.

Спасибо за то, что уделили своё время и прочитали эту статью)
По всем вопросам, а так же свои пожелания и предложения пишите на @Topmgr


Report Page