1.2.3

1.2.3

Gold

Интегральная микросхема может обладать законченной, сколь угодно сложной, функциональностью — вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

Аналоговые схемыПравитьАна́логовая интегра́льная (микро)схе́ма (АИСАИМС) — интегральная схема, входные и выходные сигналы которой изменяются по закону непрерывной функции (то есть являются аналоговыми сигналами).

Лабораторный образец аналоговой ИС был создан фирмой Texas Instruments в США в 1958 году. Это был генератор сдвига фаз. В 1962 году появилась первая серия аналоговых микросхем — SN52. В ней имелись маломощный усилитель низкой частотыоперационный усилитель и видеоусилитель[16].

В СССР большой ассортимент аналоговых интегральных микросхем был получен к концу 1970-х годов. Их применение позволило увеличить надёжность устройств, упростить наладку оборудования, часто даже исключить необходимость технического обслуживания в процессе эксплуатации[17].

Ниже представлен неполный список устройств, функции которых могут выполнять аналоговые ИМС. Зачастую одна микросхема заменяет сразу несколько таковых (например, К174ХА42 вмещает в себя все узлы супергетеродинного ЧМ радиоприёмника[18]).

Аналоговые микросхемы применяются в аппаратуре звукоусиления и звуковоспроизведения, в видеомагнитофонахтелевизорах, технике связи, измерительных приборах, аналоговых вычислительных машинахвторичных источниках электропитания и т. д.

В аналоговых компьютерах

  • операционные усилители (LM101, μA741)

В блоках питания


Микросхема стабилизатора напряжения КР1170ЕН8

В видеокамерах и фотоаппаратах


ПЗС-линейка из факса

В аппаратуре звукоусиления и звуковоспроизведения

  • усилители мощности звуковой частоты (LA4420, К174УН5, К174УН7)
  • сдвоенные УМЗЧ для стереофонической аппаратуры (TDA2004, К174УН15, К174УН18)
  • различные регуляторы (К174УН10 — двухканальный УМЗЧ с электронной регулировкой частотной характеристики, К174УН12 — двухканальный регулятор громкости и баланса)

В измерительных приборах

  • датчики давления (MP3V5100[19])
  • датчики магнитного поля (УР1101ХП30[20])
  • датчики температуры (L1V1335[21], MAX6613[22])

В радиопередающих и радиоприёмных устройствах

В телевизорах

  • в радиоканале (К174УР8 — усилитель с АРУ, детектор ПЧ изображения и звука, К174УР2 — усилитель напряжения ПЧ изображения, синхронный детектор, предварительный усилитель видеосигнала, система ключевой автоматической регулировки усиления)
  • в канале цветности (К174АФ5 — формирователь цветовых R-, G-, B-сигналов, К174ХА8 — электронный коммутатор, усилитель-ограничитель и демодулятор сигналов цветовой информации)
  • в узлах развёртки (К174ГЛ1 — генератор кадровой развёртки)
  • в цепях коммутации, синхронизации, коррекции и управления (К174АФ1 — амплитудный селектор синхросигнала, генератор импульсов строчной частоты, узел автоматической подстройки частоты и фазы сигнала, формирователь задающих импульсов строчной развёртки, К174УП1 — усилитель яркостного сигнала, электронный регулятор размаха выходного сигнала и уровня «чёрного»)

ПроизводствоПравитьПереход к субмикронным размерам интегральных элементов усложняет проектирование АИМС. Например, МОП-транзисторы с малой длиной затвора имеют ряд особенностей, ограничивающих их применение в аналоговых блоках: высокий уровень низкочастотного фликкерного шума; сильный разброс порогового напряжения и крутизны, приводящий к появлению большого напряжения смещения дифференциальных и операционных усилителей; малая величина выходного малосигнального сопротивления и усиления каскадов с активной нагрузкой; невысокое пробивное напряжение p-n-переходов и промежутка сток-исток, вызывающее снижение напряжения питания и уменьшение динамического диапазона[23].

В настоящее время аналоговые микросхемы производятся многими фирмами: Analog Devices, Analog Microelectronics, Maxim Integrated Products, National Semiconductor, Texas Instruments и др.

Цифровые схемыПравитьЦифровая интегральная микросхема (цифровая микросхема) — это интегральная микросхема, предназначенная для преобразования и обработки сигналов, изменяющихся по закону дискретной функции.

В основе цифровых интегральных микросхем лежат транзисторные ключи, способные находиться в двух устойчивых состояниях: открытом и закрытом. Использование транзисторных ключей даёт возможность создавать различные логические, триггерные и другие интегральные микросхемы. Цифровые интегральные микросхемы применяют в устройствах обработки дискретной информации электронно-вычислительных машин (ЭВМ), системах автоматики и т. п.

Цифровые интегральные микросхемы имеют ряд преимуществ по сравнению с аналоговыми:

  • Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» — что соответствует сигналу высокого уровня (1), либо «закрыт» — (0), в первом случае на транзисторе нет падения напряжения, во втором — через него не идёт ток. В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (активном) состоянии.
  • Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например, 2,5-5 В) и низкого (0-0,5 В) уровня. Ошибка состояния возможна при таком уровне помех, когда высокий уровень интерпретируется как низкий и наоборот, что маловероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов, позволяющих исправлять ошибки.
  • Большая разница уровней состояний сигналов высокого и низкого уровня (логических «0» и «1») и достаточно широкий диапазон их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора компонентов и настройки элементами регулировки в цифровых устройствах.

Аналого-цифровые схемыПравитьАналого-цифровая интегральная схема (аналого-цифровая микросхема) — интегральная схема, предназначенная для преобразования сигналов, изменяющихся по закону дискретной функции, в сигналы, изменяющиеся по закону непрерывной функции, и наоборот.

Зачастую одна микросхема выполняет функции сразу нескольких устройств (например, АЦП последовательного приближения содержат в себе ЦАП, поэтому могут выполнять двусторонние преобразования). Список устройств (неполный), функции которых могут выполнять аналого-цифровые ИМС:

Серии микросхемПравитьАналоговые и цифровые микросхемы выпускаются сериями. Серия — это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.

КорпусаПравить


Корпуса интегральных микросхем, предназначенные для поверхностного монтажа
Основная статья: Типы корпусов микросхем


Микросборка с бескорпусной микросхемой, разваренной на печатной плате

Корпус микросхемы — это конструкция, предназначенная для защиты кристалла микросхемы от внешних воздействий, а также для удобства монтажа микросхемы в электронную схему. Содержит собственно корпус из диэлектрического материала (пластмасса, реже керамика), набор проводников для электрического соединения кристалла с внешними цепями посредством выводов, маркировку.

Существует множество вариантов корпусов микросхем, различающихся по количеству выводов микросхемы, методу монтажа, условиям эксплуатации. Для упрощения технологии монтажа производители микросхем стараются унифицировать корпуса, разрабатывая международные стандарты.

Иногда микросхемы выпускают в бескорпусном исполнении — то есть кристалл без защиты. Бескорпусные микросхемы обычно предназначены для монтажа в гибридную микросборку. Для массовых дешевых изделий возможен непосредственный монтаж на печатную плату.

Специфические названияПравитьФирма Intel первой изготовила микросхему, которая выполняла функции микропроцессора (англ. microproccessor) — Intel 4004. На базе усовершенствованных микропроцессоров 8088 и 8086 фирма IBM выпустила свои известные персональные компьютеры.

Микропроцессор формирует ядро вычислительной машины, дополнительные функции, типа связи с периферией выполнялись с помощью специально разработанных наборов микросхем (чипсет). Для первых ЭВМ число микросхем в наборах исчислялось десятками и сотнями, в современных системах это набор из одной-двух-трёх микросхем. В последнее время наблюдаются тенденции постепенного переноса функций чипсета (контроллер памяти, контроллер шины PCI Express) в процессор.

Микропроцессоры со встроенными ОЗУ и ПЗУ, контроллерами памяти и ввода-вывода, а также другими дополнительными функциями называют микроконтроллерами.



Report Page